Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Photothermally activated drug release from liposomes coupled to hollow gold nanoshells

[+] Author Affiliations
Natalie Forbes

Univ. of California, Santa Barbara (USA)

Joseph A. Zasadzinski

Univ. of Minnesota (USA)

Proc. SPIE 7911, Plasmonics in Biology and Medicine VIII, 79110P (February 11, 2011); doi:10.1117/12.875548
Text Size: A A A
From Conference Volume 7911

  • Plasmonics in Biology and Medicine VIII
  • Tuan Vo-Dinh; Joseph R. Lakowicz
  • San Francisco, California, USA | January 22, 2011

abstract

Liposomes show great promise as intravenous drug delivery vehicles, but it is difficult to combine stability in the circulation, extended drug retention and rapid, targeted release at the site of interest. Accessorizing conventional and multicompartment liposomes with photo-activated hollow gold nanoshells (HGN) provides a convenient method to initiate drug release with spatial and temporal control. HGN efficiently absorb near infrared (NIR) light and rapidly convert the absorbed optical energy into heat. Femto- to nano-second NIR light pulses cause the HGNs to rapidly heat, creating large temperature gradients between the HGNs and surrounding fluid. The formation and collapse of unstable vapor bubbles transiently rupture liposome and other bilayer membranes to trigger contents release. Near-complete contents release occurs when the nanoshells are encapsulated within the liposome or tethered to the outer surface of the liposome, with no chemical damage to the contents. Release is achieved by focusing the laser beam at the target, eliminating the need for highly specific targeting ligands or antibodies. Although HGN heating can be intense, the overall energy input is small causing minimal heating of the surroundings. To ensure that drugs are retained within the liposomes until delivery in a physiological environment, we have made novel multicompartment carriers called vesosomes, which consist of an outer lipid bilayer shell that encloses and protects the drug-carrying liposomes. The second bilayer increases the serum half-life of ciprofloxacin from <10 minutes in liposomes to 6 hours in vesosomes and alters the release kinetics. The enhanced drug retention is due to the outer membrane preventing enzymes and proteins in the blood from breaking down the drug-carrying interior compartments.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Natalie Forbes and Joseph A. Zasadzinski
"Photothermally activated drug release from liposomes coupled to hollow gold nanoshells", Proc. SPIE 7911, Plasmonics in Biology and Medicine VIII, 79110P (February 11, 2011); doi:10.1117/12.875548; http://dx.doi.org/10.1117/12.875548


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.