0

Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Performance modeling of unmanned aerial vehicles with on-board energy harvesting

[+] Author Affiliations
Steven R. Anton, Daniel J. Inman

Virginia Polytechnic Institute and State Univ. (USA)

Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79771H (April 27, 2011); doi:10.1117/12.880473
Text Size: A A A
From Conference Volume 7977

  • Active and Passive Smart Structures and Integrated Systems 2011
  • Mehrdad N. Ghasemi-Nejhad
  • San Diego, California, USA | March 06, 2011

abstract

The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition of flexible piezoelectric patches to the root of the wing spar. Experimental testing is also performed in which the wing spar of the EasyGlider aircraft is modified to include both Macro Fiber Composite and Piezoelectric Fiber Composite piezoelectric patches near the root of the wing and two thin-film solar panels are installed onto the upper wing surface to harvest vibration and solar energy during flight. Testing is performed in which the power output of the various harvesters is measured during flight. Results of the flight testing are used to update the model with accurate measures of the power available from the energy harvesting systems. Finally, the model is used to predict the potential benefits of adding multifunctional self-charging structures to the wing spar of the aircraft in order to harvest vibration energy during flight and provide a local power source for low-power sensors.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Steven R. Anton and Daniel J. Inman
"Performance modeling of unmanned aerial vehicles with on-board energy harvesting", Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79771H (April 27, 2011); doi:10.1117/12.880473; http://dx.doi.org/10.1117/12.880473


Access This Article
Sign In to Access Full Content
Please Wait... Processing your request... Please Wait.
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
 

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement


Buy this article ($18 for members, $25 for non-members).
Sign In