Paper
24 February 2009 Ray racing techniques applied to the modelling of fluorescent solar collectors
Author Affiliations +
Abstract
Fluorescent solar collectors represent an alternative to flat plate photovoltaic arrays. With the emphasis on minimizing the use of silicon, the collector is usually composed of a mixture of fluorescent dyes embedded in a transparent medium. The absorbed incoming sunlight is re-emitted at a longer wavelength. A large fraction of fluorescence is totally internally reflected and transported to the edge of the collector, where the solar cell is placed. The key requirements for efficient fluorescent collectors are a good photon transport and a broad absorption of sunlight. The fundamental parameter that determines the efficiency of photon transport is the probability of reabsorption. Based on experimental results and ray-tracing simulations carried out with "TracePro", this publication illustrates the use of ray tracing to model reabsorption in collectors with different shapes as well as inhomogeneous structures, and to assess the validity of the traditional analytical approach. We show that, contrary to expectations, some novel structures (for example, "thin film" or "waveguide" collectors) do not represent an improvement over their corresponding homogeneous collectors and that any variation of the film refractive index on a glass substrate leads to an efficiency drop.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart "Ray racing techniques applied to the modelling of fluorescent solar collectors", Proc. SPIE 7211, Physics and Simulation of Optoelectronic Devices XVII, 72110N (24 February 2009); https://doi.org/10.1117/12.810922
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Refractive index

Ray tracing

Thin films

Absorption

Luminescence

Liquids

Mirrors

Back to Top