Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Magnetoresistance of flexible CNT-Fe composite thin films in a dynamic electric field

[+] Author Affiliations
Rejin Isaac, D. Roy Mahapatra

Indian Institute of Science (India)

Proc. SPIE 7980, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2011, 79800B (April 13, 2011); doi:10.1117/12.881089
Text Size: A A A
From Conference Volume 7980

  • Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2011
  • Vijay K. Varadan
  • San Diego, California, USA | March 06, 2011

abstract

Room temperature magnetoresistance (MR) under AC electric field of a composite of carbon nanotubes (CNT) and Fe nanoparticles dispersed in a base polymer of epoxy resin and amorphous carbon is reported. The films made in varying weight concentrations (1% to 3% of CNT and 1% to 5% of Fe) reveal MR dependence over the entire frequency (0- 1kHz) and amplitude range (0-3V). MR is found to increase with increase in either Fe or CNT concentration. The experiments reveal an enhanced MR as compared to the MR under a static electric field. On passing an alternating electric field through a CNT, the impedance increases due to the onset of the capacitive and inductive impedance, in addition to the already existing electrical resistance. The charge storage capacity of CNTs leads to the capacitive impedance. When electric field is applied parallel to the tube axis, electron flux along circumference is diverted into a helix current, similar to nanocoils. The Fe nanoparticles enhance the magnetic field concentration in the CNTs leading to an increased inductor like property of CNTs. The dynamics of the CNT-Fe system has been modeled using Maxwell's electromagnetic equations, with the Fe nanoparticles contributing to an additional current density in the form of spin polarized electrons. Hysteresis in MR is observed on sweeping the magnetic field. These highly tunable, flexible thin films can be used in room temperature magnetic field sensors and spintronic devices like magnetic random access memory (MRAM).

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Rejin Isaac and D. Roy Mahapatra
"Magnetoresistance of flexible CNT-Fe composite thin films in a dynamic electric field", Proc. SPIE 7980, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2011, 79800B (April 13, 2011); doi:10.1117/12.881089; http://dx.doi.org/10.1117/12.881089


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.