Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Nonlinear ultrasonic guided waves for prestress level monitoring in prestressing strands for post-tensioned concrete structures

[+] Author Affiliations
Claudio Nucera, Francesco Lanza di Scalea

Univ. of California, San Diego (USA)

Proc. SPIE 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, 79810L (April 13, 2011); doi:10.1117/12.880291
Text Size: A A A
From Conference Volume 7981

  • Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
  • Masayoshi Tomizuka
  • San Diego, California, USA | March 06, 2011

abstract

Monitoring load levels in multi-wire steel strands is crucial to ensuring the proper structural performance of post-tensioned concrete structures, suspension bridges and cable-stayed bridges. The post-tensioned box-girder structural scheme is widely used in several bridges, including 90% of the California inventory. In this structural typology, prestressing tendons are the main load-carrying components. Therefore loss of prestress as well as the presence of structural defects (e.g. corrosion and broken wires) affecting these elements are critical for the performance of the entire structure and may conduct to catastrophic failures. Unfortunately, at present there is no well-established methodology for the monitoring of prestressing (PS) tendons able to provide simultaneous and continuous information about the presence of defects as well as prestress levels. In this paper the authors develop a methodology to assess the level of load applied to the strands through the use of ultrasonic nonlinearity. Since an axial load on a multi-wire strand generates proportional contact stresses between adjacent wires, ultrasonic nonlinearity from the inter-wire contact must be related to the level of axial load. The work presented shows that the higher-harmonic generation of ultrasonic guided waves propagating in individual wires of the strand varies monotonically with the applied load, with smaller higher-harmonic amplitudes with increasing load levels. This trend is consistent with previous studies on higher-harmonic generation from ultrasonic plane waves incident on a contact interface under a changing contact pressure. The paper presents the results of experimental researches on free strands and embedded strands, and numerical studies (nonlinear Finite Element Analysis) on free strands.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Claudio Nucera and Francesco Lanza di Scalea
"Nonlinear ultrasonic guided waves for prestress level monitoring in prestressing strands for post-tensioned concrete structures", Proc. SPIE 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, 79810L (April 13, 2011); doi:10.1117/12.880291; http://dx.doi.org/10.1117/12.880291


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.