Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Residual capacity estimation of bridges using structural health monitoring data

[+] Author Affiliations
Reza Baghaei, Maria Q. Feng, Marco Torbol

Univ. of California, Irvine (USA)

Proc. SPIE 7983, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011, 79833I (April 19, 2011); doi:10.1117/12.880728
Text Size: A A A
From Conference Volume 7983

  • Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011
  • San Diego, California, USA | March 06, 2011

abstract

In this study, a vibration-based procedure for residual capacity estimation of bridges after damaging earthquake events is proposed. The procedure starts with estimation of collapse capacity of the intact bridge using incremental dynamic analysis (IDA) curves. The collapse capacity is defined as the median intensity level of the earthquakes that cause global or local collapse within the structure. A database of post-earthquake modal properties is created by calculating the analytical modal properties of the bridge after each nonlinear response history analysis performed for generation IDA curves. After the damaging event, experimental modal properties of the bridge are identified from vibration measurements of the bridge. These properties along with the modal properties database are used to find ground motionintensity pairs that can drive nonlinear FE model of the structure to the current damage state of the bridge. The IDA curves corresponding to the damaged FE model of the bridge are subsequently used to estimate amount of loss in collapse capacity of the damaged structure. Estimated loss in capacity of the bridge besides the bridge-site-specific seismic hazard curves are used to update the functionality status of the bridge. Proposed procedure is applied to experimental data from a large-scale shake table test on a quarter-scale model of a short-span reinforced concrete bridge. The bridge was subjected to a series of earthquake ground motions introducing progressive seismic damage to the bridge which finally led to the failure of one of the bents. Residual collapse capacity and functionality status of the bridge are updated at different stages of the experiment using the proposed procedure.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Reza Baghaei ; Maria Q. Feng and Marco Torbol
"Residual capacity estimation of bridges using structural health monitoring data", Proc. SPIE 7983, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011, 79833I (April 19, 2011); doi:10.1117/12.880728; http://dx.doi.org/10.1117/12.880728


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.