Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Chirp generated acoustic wavefield images

[+] Author Affiliations
Thomas E. Michaels, Jennifer E. Michaels, Sang Jun Lee, Xin Chen

Georgia Institute of Technology (USA)

Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 79840J (March 31, 2011); doi:10.1117/12.880968
Text Size: A A A
From Conference Volume 7984

  • Health Monitoring of Structural and Biological Systems 2011
  • Tribikram Kundu
  • San Diego, California, USA | March 06, 2011

abstract

Guided waves are being considered for structural health monitoring (SHM) applications, and they can also be used to reduce subsequent inspection times once defects are detected. One proposed SHM method is to use an array of permanently attached piezoelectric transducers to generate and receive guided waves between the various transducer pairs. The interrogation can be done on a continuous or periodic basis to assess the health of the structure. Once defects are suspected in the structure, the traditional approach is to disassemble components for conventional nondestructive evaluation (NDE); however, this is an expensive and time consuming process. A less expensive alternative to conventional NDE is to record acoustic wavefield images of guided waves generated from the attached transducers. These images clearly show details of guided waves as they propagate outward from the source, reflect from structural discontinuities and specimen boundaries, and scatter from any damage sites within the structure. However, the recorded waves are typically narrowband to enable effective visualization of echoes that are relatively compact in time. In this paper, we consider wavefield images that are recorded from a chirp excitation, which offers the advantage of high quality broadband data from a single excitation. However, responses are not directly useful because the received echoes are too extended in time. Signals are post-processed to obtain multiple narrowband and broadband responses containing echoes that are more compact in time to enable visualization of guided waves interacting with structural features. This technique is demonstrated on an aluminum plate that contains attached stiffeners and glued-on piezoelectric disc transducers. Wavefield data are recorded using an air-coupled transducer scanned over the plate surface while one of the attached transducers acts as a guided wave source. Waves interacting with the stiffener and the inactive discs are analyzed via broadband and narrowband processing at multiple frequencies.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Thomas E. Michaels ; Jennifer E. Michaels ; Sang Jun Lee and Xin Chen
"Chirp generated acoustic wavefield images", Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 79840J (March 31, 2011); doi:10.1117/12.880968; http://dx.doi.org/10.1117/12.880968


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.