Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Energy harvesting in electroactive materials: a comparison between ferroelectrics and electrostrictive polymers

[+] Author Affiliations
D. Guyomar, P.-J. Cottinet, M. Lallart

Institut National des Sciences Appliquées de Lyon (France)

Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 79841L (March 31, 2011); doi:10.1117/12.880762
Text Size: A A A
From Conference Volume 7984

  • Health Monitoring of Structural and Biological Systems 2011
  • Tribikram Kundu
  • San Diego, California, USA | March 06, 2011

abstract

Extending the number of functions and to improving the reliability of portable equipments is a current issue. Considering the recent progresses in ultralow-power electronics, powering complex systems on ambient energy is not chimerical anymore This paper addresses the problem of the mechanical to electrical energy conversion in electroactive materials (ferroelectrics and electrostrictive polymers) and underlines the similarities and differences between these two classes of materials in terms of energy conversion. These materials exhibit different conversion abilities and mechanical properties. The lightweight, flexible, conformable polymer properties are definitively a strong advantage for practical application like energy harvesters. The proposed energy conversion improvement is an extension, to polymer materials, of the so-called "SSHI "technique previously developed for ferroelectric materials. This non-linear voltage processing basically consists in switching the voltage, for a short period, when the voltage reaches a maximum or a minimum, resulting in a large enhancement of the conversion, up to 1000%, as well as the harvesting capability. Unlike ferroelectrics based energy harvesters, polymer harvesters require a bias electrical field to convert mechanical to electrical energy that forbids a direct extension of the SSHI technique. The needed adaptations will be discussed as well as the different trade-offs between the mechanical and electrical characteristics that the system must meet to maximize the converted energy. Increasing the polymer capacitance to enhance the conversion has been done by introducing nano-conductive particles in the polymer matrix. The paper will present and discuss experimental and theoretical data.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

D. Guyomar ; P.-J. Cottinet and M. Lallart
"Energy harvesting in electroactive materials: a comparison between ferroelectrics and electrostrictive polymers", Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 79841L (March 31, 2011); doi:10.1117/12.880762; http://dx.doi.org/10.1117/12.880762


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.