Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

A parametric study of piezoceramic thickness effect on the generation of fundamental Lamb modes

[+] Author Affiliations
Ramy Mohamed, Dominique L. Demers, Patrice Masson

Univ. de Sherbrooke (Canada)

Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 79841Y (March 31, 2011); doi:10.1117/12.880616
Text Size: A A A
From Conference Volume 7984

  • Health Monitoring of Structural and Biological Systems 2011
  • Tribikram Kundu
  • San Diego, California, USA | March 06, 2011

abstract

Ultrasound damage detection using built-in piezoelectric transducers is a promising technique because it can automatically inspect and interrogate structural damage in hard to access areas. Although numerous efforts have been devoted to the application of the structural health monitoring (SHM) concepts to real world problems; there is a shortage in the modeling tools specifically tailored for rapid computer aided design of SHM applications. This is due to the fact that the finite element method, which is the dominant method in the simulation of the wave propagation problems due to its geometric versatility and the capability to simulate complex boundary conditions as well as coupling effects, lacks the required computational efficiency for the structural health monitoring applications. This is because of the high frequencies usually utilized is SHM, posing a huge burden on the mesh size to minimize the errors. Spectral element method (SEM), a variant of the p/FEM, combines the fast convergence rates associated with the spectral methods with the geometric flexibility of the finite element method, thus allowing for more computationally efficient simulation, leading to fast product design cycle. Recently, these advantages have drawn the attention of the different researchers in the field of the SHM. The advantage of the SEM as a high accuracy solution method enables the refinement and the testing of different concepts of SHM. One of these concepts is the main focus of the current paper. The presented work is a parametric study of the effect of the piezoceramic actuator thickness on the fundamental Lamb waves S 0, and A0 using a tailored SEM solver. In order to illustrate the reduction of the computational costs the running times of the SEM solver were compared with the running times for some of cases solved using commercial FEM solver (ANSYS), as well as the results are compared with analytical results based on a widely accepted model from the literature. Additionally, the cases were validated experimentally, showing a good agreement with the simulation results.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Ramy Mohamed ; Dominique L. Demers and Patrice Masson
"A parametric study of piezoceramic thickness effect on the generation of fundamental Lamb modes", Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 79841Y (March 31, 2011); doi:10.1117/12.880616; http://dx.doi.org/10.1117/12.880616


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.