Paper
4 March 2008 Cell-based OPC with standard-cell fill insertion
Liang Deng, Kai-Yuan Chao, Hua Xiang, Martin D. F. Wong
Author Affiliations +
Abstract
Litho-aware design methodology is the key to enable the aggressive scaling down to the future technology node. Boundary based methodology for cellwise OPC has been proposed to account for influence from features of neighboring cells. As technology advances toward 32 and 22 nm, more columns of features are needed as representative environments for the boundary-based cellwise OPC. In this paper, we propose a new method that combines the fill insertion and boundary-based cellwise OPC to reduce the mask data size as well as the prohibitive runtime of full-chip OPC, making cell characterization more predictable. To make the number of cell OPC solutions easy to handle, we present a new methodology which uses dummy fill insertion both inside and outside cells to solve the issue for technologies beyond 45 nm. Experimental results show a solid 30% improvement on average and maximum edge placement errors (EPE) over the previous work.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Liang Deng, Kai-Yuan Chao, Hua Xiang, and Martin D. F. Wong "Cell-based OPC with standard-cell fill insertion", Proc. SPIE 6925, Design for Manufacturability through Design-Process Integration II, 69251L (4 March 2008); https://doi.org/10.1117/12.773192
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical proximity correction

Lithography

Photomasks

Standards development

Manufacturing

Metals

Resolution enhancement technologies

RELATED CONTENT


Back to Top