Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Plasmon-enhanced optics and magneto-optics via the near field of a nanowire

[+] Author Affiliations
Vladimir A. Kosobukin

Ioffe Physico-Technical Institute (Russian Federation)

Proc. SPIE 7996, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010, 79960F (February 28, 2011); doi:10.1117/12.887312
Text Size: A A A
From Conference Volume 7996

  • Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010
  • Vadim P. Veiko; Tigran A. Vartanyan
  • St. Petersburg, Russian Federation | July 05, 2010

abstract

A general theory is developed for surface-plasmon-enhanced near-field optics and magneto-optics via a linear nanoprobe. Considered as a model is a nanowire located near a sample with an embedded magnetic nanolayer, both nanoobjects being parallel to the surface of the sample. The nanowire is thought of as a thin noble-metal cylinder which possesses long-lived surface plasmons, and so can do the surface of noble-metal sample. With the electrodynamic Green function technique, a resonant polarization response of the complex "probe+image" is treated self-consistently within a multiple-scattering approximation. The magnetization-linear scattering events are classified in terms of TM (p -polarized) and TE (s-polarized) waves, the polarization planes of incident and scattered waves coinciding. The problem of resonant near-field magneto-optics with a linear probe is solved analytically for a nanolayer magnetized along its normal (polar magneto-optical Kerr effect). As well, in varying the in-surface distance between the near-field probe and a laterally nanosized magnetic domain, the scanning near-field microscopy in scattering mode is treated. Polarization, angle and spectroscopy characteristics of the magneto-optical resonant scatterings due to a nanowire are found and shown to differ principally from those due to a quasi-point probe. Resonant enhancement of scattering efficiency due to coupled surface plasmons of a nanowire and a sample is estimated.

© (2010) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Vladimir A. Kosobukin
"Plasmon-enhanced optics and magneto-optics via the near field of a nanowire", Proc. SPIE 7996, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010, 79960F (February 28, 2011); doi:10.1117/12.887312; http://dx.doi.org/10.1117/12.887312


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.