Paper
29 July 2004 A new control approach for switching shunt damping
Dominik Niederberger, Manfred Morari, Stanislaw Pietrzko
Author Affiliations +
Abstract
This paper presents a new control approach for piezoelectric switching shunt damping. Recently, semi-active controllers have been used to switch piezoelectric materials in order to damp vibration. These switching shunt circuits allow a small implementation and require only little power supply. However, the control laws to switch these shunts are derived heuristically and therefore it remains unclear, if a better control law for a given shunt topology exists. We present a new control approach based on the Hybrid System Framework. This allows the modelling of the switched composite system as a hybrid system. Once the hybrid system description is obtained, a receding horizon optimal control problem can be solved in order to get the optimal switching sequence. As the computation time to solve this optimisation problem is too long for real-time applications, we will show that the problem can be solved off-line and the solution stored in a look-up table. This allows a real-time implementation of the switch controller. Moreover, control rules can be derived from this look-up table, and we will demonstrate that in some situations the controllers proposed in previous papers generate near optimal switching. In this paper, we will investigate several shunt topologies with switches and compare the performance between the heuristically derived control laws and the optimal new control laws. Simulations and experiments show the improvement with the new controllers. This is very promising, since this new control approach can be applied for more complex shunt circuits with many switches, where the derivation of a switching law would be very difficult.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dominik Niederberger, Manfred Morari, and Stanislaw Pietrzko "A new control approach for switching shunt damping", Proc. SPIE 5386, Smart Structures and Materials 2004: Damping and Isolation, (29 July 2004); https://doi.org/10.1117/12.539477
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Switching

Switches

Control systems

Composites

Device simulation

Ferroelectric materials

Transducers

Back to Top