Paper
20 January 2005 Far-infrared Spectroscopy of the Troposphere (FIRST): sensor calibration performance
Gail E. Bingham, Harri M. Latvakoski, Stanley J. Wellard, Martin G. Mlynczak, David G. Johnson, Wesley A. Traub, Kenneth W. Jucks
Author Affiliations +
Proceedings Volume 5655, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II; (2005) https://doi.org/10.1117/12.578770
Event: Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, 2004, Honolulu, Hawai'i, United States
Abstract
The radiative balance of the troposphere, and hence global climate, is dominated by the infrared absorption and emission of water vapor, particularly at far-infrared (far-IR) wavelengths from 15-50 μm. Water vapor is the principal absorber and emitter in this region. The distribution of water vapor and associated far-IR radiative forcings and feedbacks are widely recognized as major uncertainties in our understanding of current and the prediction of future climate. Cirrus clouds modulate the outgoing longwave radiation (OLR) in the far-IR. Up to half of the OLR from the Earth occurs beyond 15.4 μm (650 cm-1). Current and planned operational and research satellites observe the midinfrared to only about 15.4 μm, leaving space or airborne spectral measurement of the far-IR region unsupported. NASA has now developed the sensor required to make regular far-IR measurements of the Earth's atmosphere possible. Far InfraRed Spectroscopy of the Troposphere (FIRST) was developed for NASA's Instrument Incubator Program under the direction of the Langley Research Center. The objective of FIRST is to provide a balloon-based demonstration of the key technologies required for a space-based sensor. The FIRST payload will also be proposed for science flights in support of validation of the various experiments on the Earth Observing System (EOS). We discuss the FIRST Fourier transform spectrometer system (0.6 cm-1 unapodized resolution), along with its radiometric calibration in the spectral range from 10 to 100 µm (1000 to 100 cm-1). FIRST incorporates a broad bandpass beamsplitter, a cooled (~180 K) high throughput optical system, and an image type detector system. We also discuss the actual performance of the FIRST instrument relative to its performance goal of a NE(delta)T of 0.2 K from 10 to 100 μm.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gail E. Bingham, Harri M. Latvakoski, Stanley J. Wellard, Martin G. Mlynczak, David G. Johnson, Wesley A. Traub, and Kenneth W. Jucks "Far-infrared Spectroscopy of the Troposphere (FIRST): sensor calibration performance", Proc. SPIE 5655, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II, (20 January 2005); https://doi.org/10.1117/12.578770
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Calibration

Sensors

Black bodies

Beam splitters

Fourier transforms

Infrared radiation

Infrared sensors

RELATED CONTENT


Back to Top