Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Quantum erasing of biphoton visibility: the complementarity between entanglement and single-partite properties

[+] Author Affiliations
Matthias Jakob

ARC Seibersdorf research GmbH (Austria)

Proc. SPIE 5866, The Nature of Light: What Is a Photon?, 91 (August 04, 2005); doi:10.1117/12.621028
Text Size: A A A
From Conference Volume 5866

  • The Nature of Light: What Is a Photon?
  • Chandrasekhar Roychoudhuri; Katherine Creath
  • San Diego, California, United States | July 31, 2005

abstract

A quantum eraser is proposed that operates in a domain that does not have any classical counterpart. This quantum eraser utilizes the complementary aspect between entanglement and single-partite properties of composite quantum systems. Consequently, in contrast to the duality of visibility and which-path information which establish features of single quantum systems, here, properties of composite quantum systems are considered. In composite quantum systems entanglement might emerge which is of genuine quantum origin. This nonclassical correlation mutually exclude the single-partite properties of the subsystems of the composite quantum system. The single-partite properties can be describes by wave- and particle properties, i.e. the standard wave-particle duality. Remarkably, entanglement can be considered as a resource for observables that do not exist in classical physics. In a bipartite photon system, this observable is the two-particle visibility which describes the phase relations that are shared between both photons of the composite system. The complementary aspect between two-particle visibility and single-partite properties of the subsystems prevents us from the observation of single-partite properties in an entangled biphoton system. The quantum eraser erases the two-partite visibility and retrieves single-partite properties in form of single-particle visibility for both of the two photons. Thus, both observables contain phase information giving rise to interference effects. Here, complementarity is explicitly enforced by entanglement in a quantitative manner.

© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Matthias Jakob
"Quantum erasing of biphoton visibility: the complementarity between entanglement and single-partite properties", Proc. SPIE 5866, The Nature of Light: What Is a Photon?, 91 (August 04, 2005); doi:10.1117/12.621028; http://dx.doi.org/10.1117/12.621028


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Advertisement


 

  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.