Paper
22 May 2002 Quantum cascade lasers with a heterogeneous cascade: two- and multiple-wavelength operation
Claire F. Gmachl, Deborah L. Sivco, Axel Straub, Raffaele Colombelli, Trinesha S. Mosely, James N. Baillargeon, Federico Capasso, Alfred Y. Cho
Author Affiliations +
Abstract
Unipolar Quantum Cascade (QC) lasers are easily recognized by the cascading scheme, in which electrons traverse a stack of many, typically 30 but sometimes up to 100, active regions alternated with injector regions, rather than only a single active region, as in conventional semiconductor lasers. So far, QC-lasers shared the characteristic, that all stages of the cascade were essentially identical. This makes perfect sense for lasers with optimized performance, with a low threshold current density and high optical output power. The possibility of heterogeneous cascades was sometimes discussed. However, it was uncertain if optimal operating conditions could be achieved for all components of the cascade. Here, we experimentally discuss three types of QC-lasers with heterogeneous cascades. The first type contains two sub-stacks, each using a previously optimized QC structure, connected by a thin InGaAs layer. This results in a QC-laser emitting simultaneously at 5.2 and 8.0 micrometers wavelength, with performance levels similar to those of the respective homogeneous stack lasers. It was not necessary to adjust the design electric field of the two stacks to match each other. Each sub-stack is apportioned the appropriate fraction of the applied bias. In addition, an etch-stop layer inserted between the two sub-stacks allowed fabrication of a tap into the cascade. The latter was used to selectively manipulate the laser threshold of one sub-stack, turning the 8.0 micrometers laser on and off while the adjacent 5.2 micrometers QC-laser was operating undisturbed. We also fabricated a doubly-single mode QC-distributed feedback laser with single-mode emission at 5.0 and 7.5 micrometers with simultaneous single-mode tunability. The second type of QC-laser contains a waveguide core with an interdigitated cascade of two different active regions with matching injectors and emitting at 8.0 and 9.5 micrometers wavelength simultaneously. Finally, the third type of QC-laser with heterogeneous cascade was designed to generate a broadband continuum. We observe gain from 5 to 8 micrometers and laser action continuously from 6 to 8 micrometers .
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Claire F. Gmachl, Deborah L. Sivco, Axel Straub, Raffaele Colombelli, Trinesha S. Mosely, James N. Baillargeon, Federico Capasso, and Alfred Y. Cho "Quantum cascade lasers with a heterogeneous cascade: two- and multiple-wavelength operation", Proc. SPIE 4651, Novel In-Plane Semiconductor Lasers, (22 May 2002); https://doi.org/10.1117/12.467958
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Quantum cascade lasers

Laser damage threshold

Electrons

Indium gallium arsenide

Semiconductor lasers

Laser applications

RELATED CONTENT

Nonlinear optical gain in InGaAs/InGaAsP quantum-wells
Proceedings of SPIE (February 01 1991)
Mid-IR type-II diode lasers
Proceedings of SPIE (April 07 1998)
Mid-IR intersubband quantum cascade lasers
Proceedings of SPIE (April 07 1998)
Simulation of a 1550-nm InGaAsP-InP transistor laser
Proceedings of SPIE (October 26 2009)

Back to Top