Paper
21 December 2000 Model for halftone color prediction from microstructure
Author Affiliations +
Proceedings Volume 4300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts VI; (2000) https://doi.org/10.1117/12.410816
Event: Photonics West 2001 - Electronic Imaging, 2001, San Jose, CA, United States
Abstract
In this work, we take a microstructure model based approach to the problem of color prediction of halftones created using an inkjet printer. We assume absorption and scattering of light through the colorant layers and model the subsurface light scattering in the substrate by a Gaussian point spread function. We restrict our analysis to transparent substrates. To model the absorption and scattering of light through the colorant layers, we employ the Kubelka-Munk color mixing mode. To model the scattering in the substrate and to predict the spectral distribution, we use a wavelength dependent version of the reflection prediction model developed by Ruckdeschel and Hauser. Using spectral distributions and ink weight measurements for transparencies completely and homogeneously coated with colorants, we compute the absorption and scattering spectra of the colorants using the Kubelka-Munk theory. We train our model using measured spectral distribution and synthesized microstructure images of primary ramps printed on transparent media. For each patch in the primary ramp, we synthesize a high-resolution halftone microstructure image from the halftone bitmap assuming dot profiles with Gaussian roll-offs, form which we compute a high-resolution transmission image using the Kubelka-Munk theory and the absorption and scattering spectra of the colorants. We then convolve this transmission image with the Gaussian point spread function of the transparent substrate to predict the average spectral distribution of the halftone. We use our model to predict the spectral distribution of a secondary ramp printed on the same media.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Ufuk Agar "Model for halftone color prediction from microstructure", Proc. SPIE 4300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts VI, (21 December 2000); https://doi.org/10.1117/12.410816
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Halftones

Scattering

Light scattering

Absorption

Point spread functions

Color prediction

Printing

RELATED CONTENT


Back to Top