Paper
16 August 2001 Survey of piezoelectric material strain response to electron gun excitation
Philip C. Hadinata, John A. Main
Author Affiliations +
Abstract
A plate of PZT5h was prepared with a single electrode on one face connected to a power amplifier. The opposite face was left as bare ceramic material which was then exposed to an electron beam. Sixteen strain gages were attached atop the electrode to measure the strain response and as a function of electrode potential (backpressure voltage). A range of sinusoidal voltage inputs were applied to the electrode and the strain response and current draw through the PZT were recorded. Electrode potentials between -15 and 100 V yield very predictable strain response and extremely small currents (approcimately 10-7 - 10-6 microamperes) which appear to be independent of the electrode potential. Below -15 V the current through the PZT suddenly increases to 10 (mu) a. At -15 volts level the strain response is still predictable but, as the electrode voltage decreases the strain signal begins to display significant drift. The root cause of this phenomenon is examined with the aid of the deBroglie-Einstein postulate and the Schr*dinger wave equation.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philip C. Hadinata and John A. Main "Survey of piezoelectric material strain response to electron gun excitation", Proc. SPIE 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, (16 August 2001); https://doi.org/10.1117/12.436545
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Electrodes

Ferroelectric materials

Amplifiers

Electron beams

Ceramics

Data acquisition

Dielectrics

Back to Top