Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Advances in the reduction and compensation of film stress in high-reflectance multilayer coatings for extreme-ultraviolet lithography

[+] Author Affiliations
Paul B. Mirkarimi, Claude Montcalm

Lawrence Livermore National Lab. (USA)

Proc. SPIE 3331, Emerging Lithographic Technologies II, 133 (June 5, 1998); doi:10.1117/12.309565
Text Size: A A A
From Conference Volume 3331

  • Emerging Lithographic Technologies II
  • Yuli Vladimirsky
  • Santa Clara, CA | February 22, 1998

abstract

Due to the stringent surface figure requirements for the multilayer-coated optics in an extreme UV (EUV) projection lithography system, it is desirable to minimize deformation due to the multilayer film stress. However, the stress must be reduced or compensated without reducing EUV reflectivity, since the reflectivity has a strong impact on the throughput of a EUV lithography tool. In this work we identify and evaluate several leading techniques for stress reduction and compensation as applied to Mo/Si and Mo/Be multilayer films. The measured film stress for Mo/Si films with EUV reflectances near 67.4 percent nm is approximately -420 MPa, while it is approximately +330 MPa for Mo/Be films with EUV reflectances near 69.4 percent at 11.4 nm. Varying the Mo-to-Si ratio can be used to reduce the stress to near zero levels, but at a large loss in EUV reflectance. The technique of varying the base pressure yielded a 10 percent decrease in stress with a 2 percent decrease in reflectance for our multilayers. Post-deposition annealing was performed and it was observed that while the cost in reflectance is relatively high to bring the stress to near zero levels, the stress can be reduced by 75 percent with only a 1.3 percent drop in reflectivity at annealing temperatures near 200 degrees C. A study of annealing during Mo/Si deposition was also performed; however, no practical advantage was observed by heating during deposition. A new non-thermal buffer-layer technique was developed to compensate for the effects of stress. Using this technique with amorphous silicon and Mo/Be buffer-layers it was possible to obtain Mo/Be and Mo/Si multilayer films with near zero net film stress and less than a 1 percent loss in reflectivity. For example a Mo/Be film with 68.7 percent reflectivity at 11.4 nm and a Mo/Si film with 66.5 percent reflectivity at 13.3 nm were produced with net stress values less than 30 MPa.

© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Paul B. Mirkarimi and Claude Montcalm
"Advances in the reduction and compensation of film stress in high-reflectance multilayer coatings for extreme-ultraviolet lithography", Proc. SPIE 3331, Emerging Lithographic Technologies II, 133 (June 5, 1998); doi:10.1117/12.309565; http://dx.doi.org/10.1117/12.309565


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.