Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Adaptive chirplet: an adaptive generalized wavelet-like transform

[+] Author Affiliations
Steve Mann, Simon Haykin

McMaster Univ. (Canada)

Proc. SPIE 1565, Adaptive Signal Processing, 402 (December 1, 1991); doi:10.1117/12.49794
Text Size: A A A
From Conference Volume 1565

  • Adaptive Signal Processing
  • Simon Haykin
  • San Diego, CA | July 21, 1991

abstract

We propose a new distance metric for a radial basis functions (RBF) neural network. We consider a two-dimensional space of time and frequency. In the usual context of RBF, a two- dimensional space would imply a two-dimensional feature vector. In our paradigm, however, the input feature vector may be of any length, and is typically a time series (say, 512 samples). We also propose a rule for positioning the centers in time-frequency (TF) space, which is based on the well-known expectation maximization (EM) algorithm. Our algorithm, for which we have coined the term `log-on expectation maximization' (LEM) adapts a number of centers in TF space in such a way as to fit the input distribution. We propose two variants, LEM1, which works in one dimension at a time, and LEM2, which works in both dimensions simultaneously. We allow these `circles' (somewhat circular TF contours) to move around in the two-dimensional space, but we also allow them to dilate into ellipses of arbitrary aspect ratio. We then have a generalization which embodies both the Weyl-Hiesenberg (e.g., sliding window FFT) and affine (e.g., wavelet) spaces as special cases. Later we allow the `ellipses' to adaptively `tilt.' (In other words we allow the time series associated with each center to chirp, hence the name `chirplet transform.') It is possible to view the process in a different space, for which we have coined the term `bow-tie' space. In that space, the adaptivity appears as a number of bow-tie shaped centers which also move about to fit the input distribution in this new space. We use our chirplet transform for time-frequency analysis of Doppler radar signals. The chirplet essentially embodies a constant acceleration physical model. This model almost perfectly matches the physics of constant force, constant mass objects (such as cars with fixed throttle starting off at a stoplight). Our transform resolves general targets (those undergoing nonconstant acceleration) better than the classical Fourier Doppler periodogram. Since it embodies the constant velocity (Doppler periodogram) as a special case, its extra degrees of freedom better capture the physics of moving objects than does classical Fourier processing. By making the transform adaptive, we may better represent the signal with fewer transform coefficients.

© (1991) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Steve Mann and Simon Haykin
"Adaptive chirplet: an adaptive generalized wavelet-like transform", Proc. SPIE 1565, Adaptive Signal Processing, 402 (December 1, 1991); doi:10.1117/12.49794; http://dx.doi.org/10.1117/12.49794


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement


  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.