Paper
22 December 1998 Application of laser processing for disassembly of nuclear power plants
Gennady A. Baranov, A. V. Zinchenko, R. B. Arutyunyan
Author Affiliations +
Proceedings Volume 3574, XII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference; (1998) https://doi.org/10.1117/12.334408
Event: Twelfth International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, 1998, St. Petersburg, Russian Federation
Abstract
Provision of safety and drop of ecological risk at salvaging of nuclear submarines (NSM) of Russia Navy Forces represents one of the most actual problems of nowadays. It is necessary to remove from services of Russian Navy Forces 170 - 180 nuclear submarines by 2000. At salvaging of Russian Navy Forces NSM it should be necessary to cut out reactor compartments with more than 150 thousand tons of gross weight and to fragment terminal carcasses of submarines with gross weight of 2 million tons. Taking into account overall dimensions of salvaging objects and Euro-standard requirement on the sizes of carcass fragments, for salvaging of one NSM it is necessary to execute more than 10 km of cuts. Using of conventional methods of gas and plasma cutting of ship constructions and equipment polluted with radioactive oxides and bedding of insulation and paint and varnish materials causes contamination of working zones and environment by a mix of radioactive substances and highly toxic combustion products, nomenclature of which includes up to 50 names. Calculations carried out in the Institute of industrial and Marine Medicine have shown that salvage of just one NSM with using of gas and plasma cutting are accompanied by discharge into an environment of up to 11.5 kg of chromium oxides, up to 22.5 kg of manganese oxides, up to 97 kg of carbon oxides and up to 650 kg of nitrogen oxides. Fragmentation of such equipment by a method of directional explosion or hydraulic jet is problematic because of complexity of treated constructions and necessity to create special protective facilities, which will accumulate a bulk of radioactive and toxic discharges, as a consequence of the explosion and spreaded by shock waves and water deluges. In a number of new technological processes the cutting with using of high-power industrial lasers radiation stands out. As compared with other technological processes, laser cutting has many advantages determined by such unique properties of laser radiation as large power, capability to concentrate power on the small area (up to 108 W/cm2), good spatial and temporal controllability. The laser cutting advantages are the following: (1) high efficiency; (2) capability to cut various materials (metals, alloys, plastics, rubber, ceramics) and their compositions (fiber glass plastics, rubber-plastics, cermets) by one installation; (3) minimum pollution in gas and condensed phases; (4) high degree of technological process automation; (5) remote character of cutting and personnel absence in a processing zone.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gennady A. Baranov, A. V. Zinchenko, and R. B. Arutyunyan "Application of laser processing for disassembly of nuclear power plants", Proc. SPIE 3574, XII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (22 December 1998); https://doi.org/10.1117/12.334408
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Laser cutting

Laser processing

Oxides

Laser applications

Control systems

Copper

Power supplies

Back to Top