Paper
1 March 2013 Monitoring cells in engineered tissues with optical coherence phase microscopy: Optical phase fluctuations as endogenous sources of contrast
P. O. Bagnaninchi, Christina Holmes, Maryam Tabrizian
Author Affiliations +
Abstract
There is a need in tissue engineering to monitor cell growth and health within 3D constructs non-invasively and in a label-free manner. We have previously shown that optical coherence phase microscopy was sensitive enough to monitor intracellular motion. Here we demonstrate that intracellular motility can be used as an endogeneous contrast agent to image cells in various 3D engineered tissue architectures. Phase and intensity-based reconstruction algorithms are compared. In this study, we used an optical coherence phase microscope set up in a common path configuration, developed around a Callisto OCT engine (Thorlbas) centred at 930nm and an inverted microscope with a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and the first time derivative of the phase, i.e. time fluctuations, was analysed over the acquisition time interval to map the motility. Alternative intensity-based Doppler variance algorithms were also investigated. Two distinct scaffold systems seeded with adult stem cells; algimatrix (Invitrogen) and custom microfabricated poly(D,L-lactic-co-glycolic acid) fibrous scaffolds, as well as cell pellets were imaged. We showed that optical phase fluctuations resulting from intracellular motility can be used as an endogenous source of contrast for optical coherence phase microscopy enabling the distinction of viable cells from the surrounding scaffold.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
P. O. Bagnaninchi, Christina Holmes, and Maryam Tabrizian "Monitoring cells in engineered tissues with optical coherence phase microscopy: Optical phase fluctuations as endogenous sources of contrast", Proc. SPIE 8580, Dynamics and Fluctuations in Biomedical Photonics X, 85800E (1 March 2013); https://doi.org/10.1117/12.2003730
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissues

Doppler effect

Tissue optics

Coherence (optics)

Optical coherence tomography

Microscopy

Optical microscopy

Back to Top