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Abstract 
Magnetic resonance imaging (MRI) and spectroscopy (MRS) is very powerful modality for imaging and localized 
investigation of biological tissue. Medical MRI measures nuclear magnetization of the water protons, which consists of 
70 % of our body. MRI provides superior contrast among different soft tissues to all other existing medical imaging 
modalities, including ultrasound, X-ray CT, PET, and SPECT. In principle, MRI/S may be an ideal non-invasive tool for 
drug delivery research. However, because of its low sensitivity, a large dose is required for tracing pharmaceuticals. 
Therefore, its use for imaging of pharmaceuticals is very limited mostly to molecules that contain a paramagnetic metal 
ion, such as gadolinium (Gd3+) and manganese (Mn2+). The paramagnetic metal ion provides a large fluctuating 
magnetic field at the proton in the water molecule via a coordinate site. The measurement of local drug concentration is 
the first step for further quantification. Local concentration of the paramagnetic-ion based MRI contrast agent can be 
indirectly measured via the change in the water signal intensity. 19F MRI/S of fluorinated complex may be an option for 
drug delivery and tracing agent, because the fluorinated molecule may be directly detected due to its large magnetic 
moment (94 % of proton) and 100 % abundance.  
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INTRODUCTION 
    Traditional population pharmacokinetic (PK) study requires sacrificing a large number of animals at various time 
points. The organs are extracted, and the concentration of the drug in organs is then determined in vitro, using assays 
such as high-performance liquid chromatography (HPLC). Such a PK study is based on the assumption that all the 
animals sacrificed at different time points have the same biological conditions. The degree, to which this assumption is 
violated, may introduce considerable variance in the PK parameters extracted from the data. For in vivo experiments, 
only plasma or excreted drug concentration is normally accessible, but not tissue concentration. Plasma levels of 
compound often differ from concentrations in specific tissues. The drug concentration in specific tissue won’t be the 
same as that in the plasma (1). 
    In-vivo tracing of the pharmaceuticals can provide various advantages in drug developments, particularly for 
personalized medicine. Various physiological parameters can be measured using the precise concentration of the drug 
within a specific organ. Dynamic-Contrast-Enhanced MRI (DCE MRI) with a paramagnetic contrast agent is commonly 
used to study in-vivo blood perfusion (2-3), because of its high sensitivity. Paramagnetic ions can reduce the spin-lattice 
relaxation time (T1) of water proton NMR at low concentration; as a result, T1-weighted images show enhanced signal 
intensities in the vicinity of paramagnetic ions. The higher the local concentration of paramagnetic ions is, the larger the 
enhancement of the signal intensity is. In fact, the paramagnetic metal ion induces the decreases in both T1 and T2. At 
low concentration, the signal change is mainly due to the change in T1.  
     Non-proton MRI has rarely been used to study pharmacokinetics, because its signal intensity is generally very low. 
Although hyperpolarized gas (3He or 129Xe) MRI can provide high signal intensity, and therefore high temporal 
resolution, the short life-time (about 30 sec) oif in vivo hyperpolarized gas limits the observation window. Also because 
the same flipangle is generally used at each time point, magnetization tipped to the transverse plane to generate the 
signal varies from one time point to another, making it hard to quantify tracer concentration over different time points. 
19F MRI/S is a possible option, although its signal intensity cannot be compared to hyperpolarized gas. It has high 
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gyromagnetic ratio compared to other non-1H nuclei, no background signal, 100 % abundance, and reusable 
magnetization (unlike hyperpolarized magnetization). 19F MRI/S have been used to study a variety of biologic processes 
including metabolism (4-6), tumor growth (7-9), blood flow (10-11) and cell tracking (12). However, most fluorinated 
compounds are not for in vivo 19F MRI applications because of their low signals, multiple peak that result in further 
signal loss, long T1, and long retention time in vivo due to the high hydrophobicity or water solubility. 19F MR 
spectroscopy has been used to investigate the clearance of corticosteroid drug (triamcinolone acetonide phosphate) in the 
eye (13), delivery of psychiatric drugs, e.g. trifluorinated neuroleptics (fluphenazine and trifluoperazine) and 
trifluorinated antidepressants (fluoxetine and fluvoxamine) (14) and anticancer drugs, e.g. 5-FU (15-16).  
    In this presentation, three MRI/S applications will be presented for tracing and quantification of the exogenous 
pharmaceuticals, which were performed at a clinical MRI system with 3T magnetic field strength. Requirements to 
improve the measurement sensitivity are also discussed.  
 
METHODS AND MATERIALS 
      All MR experiments were performed at a 3T clinical wholebody MRI system (Tim-Trio, Siemens Medical Solution, 
Erlangen, Germany). Anatomy and animal specific RF coils were developed for each work. Pulse sequences were 
developed at IDEA, pulse sequence development environment for Siemens MRI system.  
RF coil for small animal MRI: Higher resolution is needed to image a small animal, which requires increased 
sensitivity for adequate signal-to-noise ratio (SNR). RF coil is an antenna that allows communication between the 
spectrometer and the spin system. It transmits electromagnetic wave during RF pulse to and receives NMR signal from 
the spin-system. The transverse magnetization induces electromotive force (emf) on the RF coil. However, all RF coils 
for human applications are too large for imaging small animal. The sensitivity of an RF coil depends on the filling factor 
of the imaging object within the effective coil volume. Thus, the clinical RF coil loose the sensitivity for small animal 
MR imaging because of low filling factor.  
 

 
Figure 1. (a) Quadrature T/R switch, including preamplifier and (b) two single tuned quadrature RF coils for mouse 
imaging. A PIN diode is used to switch between Tx and Rx in T/R switch. T/R switch is capable to accept a proton-only 
or 19F/1H dualtune RF coil. 

 

Figure 2. (a) Two 
saddle coils. 1H coil 
was printed on a 
copper plated 
microwave circuit 
board. (b) Two coils 
combined. 

Transmit/receive (T/R) switch, shown in Fig. 1a, is used to direct the RF pulse from the RF amplifier to the coil and 
NMR signal from the coil to the preamplifier/receiver. It protects the preamplifier from the high-power RF pulse. It can 
be built or purchased from coil manufactures. For 1H-only MR imaging, it can be Tx/Rx volume type or receive-only 
phased array surface coil using the body RF coil for RF transmission. For the quantification of the drug-delivery 
research, volume RF coil is preferred because of its superior RF homogeneity to that of surface RF coil. Fig. 2 shows a 
19F/1H dualtune RF coil for mouse imaging. 
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    One practical problem to build a 19F/1H dualtune coil is that their resonance frequencies at 3T are separated only 7 
MHz. It is generally difficult to make a dualtune RF resonator with single physical coil for two frequencies with such 
small separation. One possible option is to utilize the PIN diode to switch between two resonance frequencies. The coil 
is constructed for 1H resonance and capacitors are added for lower 19F frequency to specific positions in the coil with 
PIN diodes. Using the PIN diode control logic, that modern MRI system provides, the coil can be tuned and matched for 
either 1H or 19F frequency in runtime. In our 19F MRI project, a double-tuned 19F/1H RF coil was constructed using two 
saddle coils, one for 19F and another for 1H, which are geometrically positioned orthogonal to each other. It is necessary 
to null the mutual inductance between two coils. Further fine adjustments, which include tuning, matching, and coil 
decoupling, were accomplished using variable capacitors in the coil. 

 

Figure 3. 19F single-tuned quadrature RF coil with T/R 
switch in Fig. 1(a) for rabbit eye 19F MR spectroscopy, 
consisting of a circular and 8-shaped coils to orient the 
magnetic field orthogonal to each other. The coil is 
positioned within a volume Tx/Rx coil. 1H coil was actively 
detuned during the 19F imaging by PIN diodes. 

 
MRI and MRS pulse sequences 
    Clinical MRI system includes very stable pulse sequences for routine patient examinations. However, typical clinical 
pulse sequences may not run for MRI and MRS of nuclei other than proton or some of the imaging parameters may not 
be suitable for small animal imaging. It may be necessary to either modify or make major changes in the source code and 
recompile and install the binaries into the MRI system.  
 
FID sequence for MR spectroscopy using a surface Tx/Rx coil: Surface RF coil is used to improve the SNR by 
limiting the noise. It generates the very inhomogeneous, i.e. spatially variant, RF pulse and correspondingly its reception 
sensitivity is also spatially variant. This spatial inhomogeneity is often used for localization. However, it is the barrier for 
the quantification for MR image based PK study. Adiabatic RF pulse, such as adiabatic half passage or BIR4 (B1 
Independent Rotation), can be used as the excitation RF pulse to improve the spatial homogeneity. These waveforms 
with time-varying amplitude and phase need to be generated either externally and imported into the sequence, or 
internally within the pulse sequence. The sequence (b) was used to study the clearance of TAP (triamcinolone acetonide 
phosphate, C24H31FO6, 637 g/mol) in rabbit eye. TAP contains a 19F nucleus in a molecule. 

(a)    (b)  (c)  
Figure 4. Single-pulse FID pulse sequence with (a) rectangular, (b) adiabatic half passage (AHP), and (c) BIR4 
excitation. The adiabatic RF excitation in (b, c) not only helps improve the RF homogeneity within the effective volume 
of a surface coil, also improve the SNR. 
 
Gradient-echo pulse sequence with short TE for density-weighted 19F MRI: For quantification PK study, it is 
necessary to measure the MR images without other weighting, such as T1 or T2 weighting. The echotime TE must be 
minimal with the recovery time (TR) larger than 3 T1. Pulse sequence diagram in Fig. 5a and 5b indicate a gradient-echo 
imaging sequence with (a) asymmetric and (b) symmetric excitation RF pulses. TE is reduced by 1.1 ms using the 
asymmetric RF pulse. Reduction of TE by 1.1 ms may be a significant for imaging of short T2 species such as imaging 
Gd-chelated 19F complex. This sequence was used for 19F MRI of 19FIT (fluorinated imaging tracer). 
 
MRI and MRS experiments: All animal MRI experiments were performed under the protocol, approved by the 
Institutional Animal Care and Usage Committee (IACUC) of the University of Utah. The animals were anaesthetized 
using a cocktail of Ketamine and Xylazine with appropriate dose. Body temperature was maintained at about 36 oC by 
supplying warm air directly to around the animal body. Each RF coil was tuned and matched, before placing the animal 
into the RF coil.  
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Figure 5. Gradient-echo imaging pulse sequence with (a) asymmetric and (b) symmetric excitation RF pulses with the 
corresponding echotimes 1.0 and 2.1 ms, respectively. The reduced TE in (a) will help in reducing error in density-
weighted MRI. The asymmetric RF allows reducing the effective dephasing time during the excitation and 
correspondingly the refocusing duration as well, thus the TE becomes shorter. Rectangular box in RF line indicates the 
data acquisition window. 
 
RESULTS 
Proton MRI of gadolinium-based contrast agent: Dr. Lu, one of the authors, is an expert to develop various 
polymerized MR imaging and drug delivery agents. We have been intensively developed and investigated 
pharmacokinetics of these new MRI agents on mice using MRI (17-26). One set of dynamic MR images is shown in Fig. 
6 from mice injected with polymerized Gd complex with different molecular weights (top: 21 kDa, mid: 60 kDa) at 
different time points. These images were acquired using a home-made mouse volume RF coil, which gave 3 times SNR 
improvement compared with that using a human wrist RF coil. The plots on the right indicate the signal intensity/time 
curves of blood plasma and ROIs at liver and kidney, respectively.  

  
Figure 6. (Lt) Dynamic MR images of mice with polymerized Gd complex injected and (Rt) time course of the signal 
intensity at blood, liver, and kidney.  
 
Proton-MRI for rabbit eye study:  GBCA (Gd-based contrast agent) aided proton imaging experiment were performed 
on rabbit eyes with various compounds with different molecular weights (~ 144 kDa) (27), which were developed by Dr. 
Lu’s group. Clinical GBCA (MultiHance), which has a low molecular weight, was injected into opposite eye as the 
control. The purpose of the study was to evaluate the effect of molecular sizes upon the clearance of drugs in the eye. 
The clearance of these molecules is expected to be dominated by the physical diffusion of the molecules in the vitreous 
humor at early time points and then by the blood circulation after the molecules reach the tissue. T1 weighted spin-echo 
images using conventional spin-echo and rapid T1 mapping using a multishot-EPI with automated TR and TE (27) were 
acquired at each time point. Because of the lack of active carriers in the eye, the molecular transport relies on self-
diffusive motion of the drug compounds until the molecules reach the tissues surrounding the vitreous humor. Fig. 7 (a, 
b) are T1 weighted images, and (c, d) are their corresponding concentration maps of selected time points. The 
concentration maps were calculated using the T1 maps with known total amount at t = 0.   
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Figure 7. T1 weighted spin echo images for (a) PGH20 
(Lt) and MultiHance (Rt) and (b) GDCP21 (L) and 
MultiHance (R), and corresponding T1 maps for (c) 
PGH20 (Lt) and MultiHance (Rt) and (d) GDCP21 (L) and 
MultiHance (Rt), respectively. Day, hour and minute are 
abbreviated as d, h and min, respectively. White arrows 
indicate the injection sites of the contrast agents.  

The plots in Fig. 8 display the clearance patterns of each compound. The concentration signals within the regions-of-
interest (ROIs), which were manually selected, were summed over the entire eye for all slices. Because of the variability 
to measure T1 relaxation time in human MRI system, it was difficult to measure the short T1; hence, T1 map of the high 
Gd3+ concentration at early time point is subject to error. 
 

 

Figure 8. Concentration-time 
profile of (a) non-
biodegradable PGH (20 and 90 
kDa) and (b) biodegradable 
GDCP (21 and 144 kDa). The 
concentration-time profiles of 
MultiHance in (a) and (b) are 
shown as reference. 

 

  
Figure 9. 19F spectra of TAP in rabbit eye, measured at different time points. The inserted figure shows the relative 
positions of the coil and reference sample with respect to the eye. This result was presented in the article, Liu X, Li KS, 
Jeong EK, Exp. Eye Res, 2010; 91: 347-352. (Reference 32) 
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19F MR spectroscopy for eye study: This experiment was to measure the clearance pattern of a clinical anti-
inflammatory drug in the eye (28). Prior to this experiment, paramagnetic-ion based MRI contrast agents were used to 
mimic the clinical drug, such as TAP and DSP (dexamethasone phosphate), assuming that the clearance pattern in the 
eye is solely determined by the size of the drug molecules (29-32). In this experiment, the drug molecule was directly 
observed by 19F MR spectroscopy. While the traditional method requires sacrificing a large number of rabbits at various 
time points for PK study, only four rabbits were used for the study. Fig. 9 shows the changes of 19F signal intensity on 
the same animals over time post-injection. As shown in the insert, 19F Tx/Rx coil is position on the same equator plane 
of the eye, and a reference vial filled with a known quantity of 19F as KF is placed opposite side of the eye to normalize 
the sensitivity variation of the coil due to different MR loading effect. The plots on the right are the signal-intensity vs. 
post-injection time for in-vivo and post-mortem rabbits to evaluate the clearance of the TAP. The half-life in the 
postmortem eye is much longer than that in in-vivo, which indicates the major route for the drug clearance may be 
affected by blood circulation. 
 
 19F MRI: Most of the commercially available fluorinate complexes are handicapped for 19F MRI, by their 
hydrophobicity, long 19F T1, small number of 19F nuclei within a molecule, and multiple chemical shift peaks, and thus 
the detection sensitivity is very low. Dr. Yu’s group at University of Maryland has been developing fluorinated 
imaging/tracing (19FIT) agent (33-34), which contains 27 chemically identical 19F nuclei, a few hundred ms T1 and low 
hydrophobicity. Its in-vivo half-life was found to be about 6 hours in mice. It is known that perfluoro-15-crown-5-ether 
(C10F10O5), most commonly used 19F MRI agent, is cleared through the lung. Fig. 10 shows a series of 19F MR images 
that are overlaid on anatomic proton MR images. Image at each time point was measured on the same animal, thus 
variability among the different animals is not a question as in traditional non-image based PK study. 

   
Figure 10. (Lt) 19F MR images overlaid on proton images at each time point, and (Rt) the total signal intensity of the 
region-of-interest enclosed within the dotted box shown in 43 min time point. Similar work was presented by Jiang ZX, 
Liu X, Jeong EK, Yu YB, Angew. Chem. Int., 2009, 48, 4755. (See reference 33). 
 
 
DISCUSSION 
    For pharmacokinetic evaluation of specific pharmaceuticals, it is important to accurately estimate the local 
concentration of the drug molecules. Although paramagnetic-ion based molecules, such as Gd2+ and Mn2+, are most 
commonly used as the MR imaging and delivery agents, the signal intensity of the water proton MRI, assisted by these 
contrast agents, is not linear with the local concentration of the metal ions, as shown in Fig. 9. Rather, the spin-lattice 
relaxation rate R1 (= 1/T1) is linear to the concentration as 𝑅! 𝐶 = !

!!"
+   𝑟!𝐶, where r1 is defined as the relaxivity of the 

agent molecule (35-36). It takes several minutes or longer to measure T1 relaxation time using conventional MR imaging 
method, thus it is not practical to use the T1 to estimate the local concentration of the metal ions, particularly in dynamic 
MR imaging. In most dynamic perfusion MR imagings, the signal intensity is converted using a calibration method with 
phantom data obtained in a separate experiment. However, the relaxivity of the paramagnetic-ion based MRI contrast 
agent differs in tissue from that in solution in the phantom due to the different molecular motion, particularly the 
rotational motion. Systematic errors are introduced during the conversion of the signal intensity to the local 
concentration, and these errors propagate to all resultant PK evaluations. Rapid T1 map imaging can be used for dynamic 
perfusion imaging for PK analysis (27, 37, 38). 
    In contrast to GD-assisted proton MRI, the signal-intensity of the density-weighted 19F MRI/S is linear with the 19F 
concentration. However, even with a large number of 19F atoms in a molecule, relatively short T1, and a single resonance 
peak, the sensitivity of the 19F imaging agent is generally low. Therefore, increased dose is required. Fortunately, most 
fluorinated complex is chemically very stable and relatively safe for in-vivo usage. In case that the MR imaging is not 
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sensitive enough to evaluate the kinetics of the fluorinated complex, a localized 19F MR spectroscopy with increased 
voxel dimension can be used to measure the fluorinated molecules within a specific organ.  
 

 

Figure 11. (a) Signal intensities of spin-
echo and gradient-echo images, and (b) 
1/T1 vs. [Gd(III)] in a solution phantom 
with various concentrations. Dotted line in 
(b) indicates linear fit to 1/T1 with 1/T10 = 
0.520 sec-1, and relaxivity r1=5.87 sec-1.mM-

1.  

 
    It is advantageous to conduct mouse/rat MRI using a small bore animal MRI system. Because the organs in rodents 
are proportionally small compared to those in human, spatial resolution must be correspondingly increased. But it is 
relatively less available. An alternative approach is to use the wholebody clinical MRI system, which is widely available 
at almost every major hospital. One definite advantage using a clinical MRI system for drug development study is that 
we may be able to evaluate the sensitivity of the future practical application. For instance, a fluorinated compound may 
give the signal intensity sufficient for PK evaluation at 7 T MRI system, but not at the clinical MRI system with lower 
magnetic field strength.  
    Although the spatial resolution can be improved using a higher field magnet, the relaxivity of a paramagnetic-ion 
based MR imaging/tracing agent is different at high field compared with that in the low field of clinical MRI system. In 
this sense, it is preferred to perform MRI experiment with high-filling factor animal MRI RF coil at the field strength 
comparable to that for human MRI system, such as 1.5 and 3 T systems. However, compared with small-bore research 
MRI systems, it is much more complex for pulse sequence programming at the clinical MRI system. This complexity in 
a clinical MRI system is mostly from various imaging options and the intensive safety check.  
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