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ABSTRACT 

Aiming at the problems of background interference and incorrect angles in the images collected by inspection robots, a 

computer vision-based automatic inspection and reading system for pointer-type instruments is proposed, which can 

automatically obtain pointer readings on the basis of instrument image detection and correction. First, use the Centernet 

algorithm to detect the target of the pointer instrument image, and cut out the instrument image with the background 

removed according to the detected position information; then, perform key point detection, select a pair of symmetrical 

key points to rotate the instrument using affine transformation Correction, and then select two pairs of symmetrical key 

points through template matching to correct the inclination of the meter using perspective transformation; finally, complete 

the reading of the meter by using Otsu segmentation and Hough transform circle and line detection. The experimental 

results show that the proportion of images to be corrected is 93%, the average error rate of the corrected instrument image 

is reduced by 10.19%, and the average accuracy of readings reaches 97.02%, which can meet the practical application. 
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1.INTRODUCTION 

There are a large number of pointer instruments in mines, substations, chemical plants and other places to measure the 

equipment. For the reading and recording of the instruments, since most of the pointer instruments do not have a 

communication interface, manual reading is often required[1-2]. Manual reading is not only time-consuming and costly, but 

the accuracy of reading values also depends on the working status and work experience of the reading personnel. Therefore, 

it is of great significance to study a system that can realize automatic reading of pointer instrument. 

For the detection and reading of pointer-type meters, researchers at home and abroad have carried out researches to varying 

degrees. Li Jinhong et al.[3] proposed to use the Faster RCNN algorithm to detect dials and pointers, and perform binary 

segmentation, Hough transform and other operations on the detected pointer images to obtain readings. Xu Li et al. [4] 

proposed an iterative maximum inter-class variance algorithm to solve the problem that the inspection robot's collection 

of instrument images is easily affected by light and dust, which can extract pointers under different interference conditions. 

Jiang Tao et al.[5] used bilateral filtering and single-scale Retinex algorithm to perform feature enhancement and noise 

reduction on the image, then used Mask RCNN convolutional neural network to locate the meter, and used algorithms such 

as Hough transform detection to complete the reading of the meter. Pick. Ma Bo et al.[6] proposed to use prior knowledge 

to generate virtual samples for training, and then use CNN and virtual samples for automatic instrument identification. Lei 

et al.[7] proposed a pointer-type meter recognition method that improved the East algorithm, and used the lightweight neural 

network MOGA to replace the East algorithm, thereby reducing the amount of parameters of EAST. Robert Sablatnig et 

al.[8] innovatively proposed to use Hough transform to detect circular dials under specific constraints such as industrial 

environments. Corrêa Alegria et al.[9] proposed to collect two different pointer scale meter images with the same angle and 

position, subtract them, calculate the rotation angle of the two pointer regions obtained, and use the obtained rotation angle 

to complete the calibration of the meter. Waisq Khan et al.[10] proposed a method for pointer recognition using convolution 

operations to address the impact of low resolution and illumination issues on pointer detection. 

However, with the continuous development of technology, inspection robots have begun to be used in image acquisition 

of instruments. Using inspection robots for image acquisition can greatly reduce costs and complete image acquisition 
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tasks in complex environments and severe weather. The instrument image also has instrument position offset, background 

information interference, dial tilt and so on. 

In order to solve the above problems, an automatic inspection and reading system of pointer-type meters based on computer 

vision is proposed. The system consists of four parts: instrument panel detection, instrument key point detection, instrument 

image correction and instrument reading recognition. Use the inspection robot to collect images and send them back to the 

computer, where the images are detected and read. This method can be applied to a variety of instrumentation scenarios to 

meet actual needs. 

2.OVERALL DESIGN PROCESS OF THE INSTRUMENTATION DETECTION SYSTEM 

After the inspection robot starts working, the images it acquires are transmitted to the workstation in real time. Firstly, the 

Centernet algorithm is used to detect the position of the meter disc and then the Centernet algorithm is used to detect the 

two pairs of key points of the meter symmetrical about the centre. The calibration operation eliminates the difficulty of 

reading the meter due to angular deflection and tilt. After pre-processing the corrected instrument image with mean filtering 

and greyscaling, the dial is detected using the Hoff transform circle, the pointer is segmented by the Otsu algorithm, the 

pointer is detected by the Hoff transform straight line and finally the reading is obtained according to the angle method. 

The overall design flow of the instrument detection system is shown in Figure 1. 
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Figure 1 Flow chart of meter reading system 

3.INSTRUMENT READING IDENTIFICATION METHOD 

In this paper, the instrument reading recognition method is proposed, including instrument dial detection, instrument key 

point detection, instrument image correction and instrument reading recognition. 

3.1 Instrument dial detection 

In recent years, deep learning has been widely used in the field of computer vision, and has achieved a lot of results in 

image segmentation, image classification, 3D reconstruction and object detection[11-13]. ResNet[14] proposed the idea of 

residual connections, which showed good results in feature extraction, and the network was widely used in image 

classification, segmentation, and object detection. Using ResNet-50 as the backbone network of the dashboard, the 

Centernet[15] algorithm is used for the detection of the dashboard. 

3.2 Instrument key point detection 

The traditional processing method for instrument key point detection is not satisfactory. The traditional detection algorithm 

mainly consists of three stages. First, a sliding window is used to scan the entire image to generate a target proposal frame. 

This method requires a large amount of calculation, is inefficient, and performs many repeated calculations; Then extract 

the features of the proposed frame by manual design. Due to the diversity of instrument panel shapes and different lighting 

conditions, it is difficult to design a feature with strong robustness, and the quality of the extracted features directly affects 

the classification accuracy; Finally, use the classifier to complete the classification. Compared with the traditional detection 

algorithm, the Centernet algorithm has high detection efficiency for instrument key points, less computation, strong 
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robustness, and good recognition effect. Therefore, this paper proposes to use the Centernet-based algorithm to detect the 

key points of the instrument, and select two pairs of scale numbers symmetrical about the center as the key points. 

The predecessor of Centernet is Cornernet proposed by Law et al.[16] in 2018. This algorithm introduces the idea of key 

point estimation into target detection. Cornernet is a single-stage target detection method that treats a detection target as a 

pair of key points, that is, the boundary. The upper left and lower right corners of the box. The prediction frame is obtained 

by detecting the two key points of the upper left corner and the lower right corner of the target frame. The anchor is not 

used in this method, which solves the limitation of the size of the object using the anchor. The recognition accuracy of 

Corternet surpasses that of Retinanet[17], but the speed of this algorithm has no advantage due to the large backbone network 

and complex post-processing methods. 

Centernet is mainly composed of two parts, the first part is the feature extraction network, using ResNet-50, the second 

part is heat map prediction, center point prediction, width and height prediction, so as to obtain the detected target frame. 

The size of the input image is 512×512×3, and the features of the image are extracted by ResNet-50, and then the high-

resolution image output is obtained through three upsampling operations. After each deconvolution operation is completed, 

the height of the feature layer is high. The sum width will become twice the original size, and after the three deconvolutions 

are completed, a high-resolution feature map of 128×128×64 is obtained. Perform three convolutions on this feature map 

to obtain a heat map of C categories, a center point prediction map with a channel number of 2, and a width and height 

prediction map with a channel number of 2. The schematic diagram of the structure of this algorithm is shown in Figure 2. 

 

Figure 2 Centernet network structure diagram 

The loss function of the heat map is improved on the basis of Focal loss, where N represents the number of key points in 

the image, α and β are hyperparameters, α, β are set to 2 and 4, respectively, 𝑌xyc representing the true value under 

the sample Gound truth, 𝑌̂𝑥𝑦𝑐  representing The predicted value of the sample. The heatmap loss function is shown below. 

Lk = −
1

𝑁
∑ {

(1 − 𝑌̂𝑥𝑦𝑐)
α

log 𝑌̂𝑥𝑦𝑐                           𝑌xyc = 1

(1 − 𝑌xyc)
β

(𝑌̂𝑥𝑦𝑐)
α

log(1 − 𝑌̂𝑥𝑦𝑐)          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
𝑥𝑦𝑐                   (1) 

The key points on the heat map are represented by a two-dimensional Gaussian kernel, and the value closer to the key 

point is closer to 1, and vice versa. When it 𝑌xyc is 1, the value of the easy-to-classify instrument sample is 𝑌̂𝑥𝑦𝑐  close to 

1. At this time, (1 − 𝑌̂𝑥𝑦𝑐)
α

 the calculated value is small, and the calculated loss function value is small, which can correct 

the key points of the instrument; for the difficult-to-classify The instrument sample of , the predicted value is 𝑌̂𝑥𝑦𝑐  close 

to 0, the (1 − 𝑌̂𝑥𝑦𝑐)
α

 calculated value at this time is larger, and the corresponding training weight is increased. When it 

𝑌xyc is not 1, in order to prevent the predicted value from 𝑌̂𝑥𝑦𝑐   approaching 1, it is used (𝑌̂𝑥𝑦𝑐)
α
  as a penalty item. 

However, (1 − 𝑌xyc)
β
 the closer the parameter is to the center point of the meter, the smaller the obtained value, which 

further reduces the corresponding penalty. 

The target box size and center point paranoia use the L1 loss function. N is expressed as the number of key points of the 

𝑠𝑖instrument, the real size of the instrument frame, and the 𝑆̂𝑖 predicted target instrument size. The target box size loss 

function is shown below. 

𝐿𝑠𝑖𝑧𝑒 =
1

𝑁
∑ |𝑆̂𝑖 − 𝑠𝑖|

𝑁
𝑖=1                                      (2) 

The total loss function of the Centernet network is to sum the three partial losses corresponding to the heat map, the target 
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box size and the center point offset. Due to the large loss of the target box size calculation, multiply it by a hyperparameter 

to reduce its loss value. 𝜆𝑠𝑖𝑧𝑒  The value is 0.1 and the 𝜆𝑜𝑓𝑓  value is 1. The loss function of the Centernet network is 

shown below. 

𝐿𝑑𝑒𝑡 = Lk + 𝜆𝑠𝑖𝑧𝑒𝐿𝑠𝑖𝑧𝑒 + 𝜆𝑜𝑓𝑓𝐿𝑜𝑓𝑓                                (3) 

3.3 Instrument image correction 

When the instrument is installed for the first time, most of the instruments are asymmetrical about the center symmetry 

line due to the installation interface and inspection shooting, and the dial is in a rotating state. On this basis, the inspection 

robot is used for image acquisition. Since the camera and the instrument are not on the same horizontal line, the collected 

instrument image is inclined. Therefore, there are tilt and rotation issues for the acquired instrument image. This paper 

proposes to select two points of initial scale and maximum scale as key points to perform rotation correction using affine 

transformation. After the rotation correction is completed, two pairs of scale key point position information of the new 

instrument image are obtained by calculation, and the new key point information is used for perspective transformation. 

Complete tilt correction. 

3.3.1 Instrument rotation correction  

After obtaining the position information of a pair of key points about the initial scale and the maximum scale symmetrical 

to the central symmetry line through detection, connect the two points to calculate the angle between the line connecting 

the two points and the horizontal direction, and after obtaining the rotation angle, select The center point of the image is 

used as the rotation center, and the rotation correction of the instrument is performed. The instrument rotation angle is 

shown in Figure 3 below. 

 

Figure 3 Instrument rotation angle 

The principle of affine transformation is to linearly transform a picture from a two-dimensional plane to a new two-

dimensional plane, and the relative positional relationship between its graphics does not change. The matrix corresponding 

to its transformation is shown below. θ  is the required rotation angle, 𝑥 and 𝑦 is the abscissa and ordinate values 

corresponding to the key points obtained by the target detection. 

[
𝑥1
𝑦1

1
] = [

cos θ − sin θ 0
sin θ cos θ 0

0 0 1
] [

𝑥
𝑦
1

]                                (4) 

Expand the formula to calculate the sum corresponding to the corresponding rotated picture, 𝑥1 and 𝑦1 the expansion 

formula is as follows. 

𝑥1 = cos θ × 𝑥 − sin θ × 𝑦                                  (5) 

𝑦1 = sin θ × 𝑥 + cos θ × 𝑦                                  (6) 

3.3.2 Instrument tilt correction 

After the affine transformation, the instrument picture is still tilted, so we use perspective transformation to correct the tilt 

of the instrument. Compared with affine transformation, perspective transformation can transform an elliptical dial into a 

circular dial. The principle of perspective transformation is to project a two-dimensional picture onto a three-dimensional 

plane, and then transform it into a new two-dimensional plane. During transformation, we need to obtain the position 

information of the four key points before the transformation and the position information of the four key points after the 

transformation in advance. The position information of the four key points before the transformation is obtained by rotation 

correction; the position information of the four key points after the transformation is obtained by collecting the standard 

photos of the instrument in advance, and obtaining the horizontal and vertical coordinates corresponding to the four key 
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points of the standard photos, so as to obtain the position information of the four key points. Transformation matrix. The 

general expression of the perspective matrix is shown below. 

C= [

𝐴11

𝐴21

𝐴31

𝐴12

𝐴22

𝐴32

𝐴13

𝐴23

𝐴33

]                                         (7) 

𝑥1 and 𝑦1 are the key point position information before perspective transformation, 𝑥2 , 𝑦2 , 𝑧  are the coordinate 

information projected to the three-dimensional plane. 𝐴33 value is set to 1. 

[
𝑥2
𝑦2

𝑧
] = [

𝐴11

𝐴21

𝐴31

𝐴12

𝐴22

𝐴32

𝐴13

𝐴23

𝐴33

] [
𝑥1
𝑦1

1
]                                    (8) 

𝑥3 and 𝑦3 are the abscissa and ordinate coordinates of the key points of the corresponding picture after the perspective 

transformation. Substitute the four key points into the corresponding equations, and then the corresponding perspective 

matrix can be obtained. Among them, 𝐴13 and 𝐴23 these two elements will transform the picture in perspective.  

𝑥3 =
𝑥2

𝑧
=

𝐴11𝑥1 + 𝐴12𝑦1 + 𝐴13

𝐴31𝑥1 + 𝐴32𝑦1 + 𝐴33

                                                                       (9) 

𝑦3 =
𝑦2

𝑧
=

𝐴21𝑥1 + 𝐴22𝑦1 + 𝐴23

𝐴31𝑥1 + 𝐴32𝑦1 + 𝐴33

                                                                     (10) 

The image of the instrument before and after tilt correction using perspective transformation is shown in Figure 4 below. 

Figure (a) is the instrument image before perspective transformation, Figure (b) is the instrument image after perspective 

transformation, and Figure (c) is the standard instrument image for template matching. 

                                        
(a) Before perspective transformation image (b) After perspective transformation image (c) Template matching instrument image 

Figure 4 Instrument tilt correction 

3.4 Instrument reading recognition 

For the instrument image obtained after target detection, key point detection and image correction, image preprocessing, 

disc detection, pointer segmentation, pointer detection and angle calculation are performed to complete the meter reading. 

The preprocessing adopts mean filtering, retains the frame part, and averages the pixels within a certain range to erode the 

area with a small area. In order to improve the operation speed, the color image is converted into a grayscale image. 

After the grayscale image is obtained, the redundant background information is removed by using the Hough transform 

circle detection and the position of the center of the meter circle is obtained. The principle is that all non-zero pixels in the 

image are considered to be a point on a potential circle. Using voting calculation, a cumulative two-dimensional coordinate 

plane is generated, and then the detected dial image is obtained according to the set threshold. 

The extraction pointer is segmented using Otsu's algorithm. Using the Otsu algorithm only once cannot separate the meter 

pointer very well, so it is necessary to use the Otsu algorithm for multiple times to separate the pointer. The Otsu algorithm 

is called the maximum inter-class variance method. The principle is to use the grayscale image to calculate the total number 

of pixels in the histogram, divide the image into two parts, the foreground and the background, and use statistical methods 

to select the threshold to make the foreground and the background. The background variance is the largest, and the image 

segmentation is completed. WL Represents the proportion of low pixels in the image, WH represents the proportion of 

high pixels in the image, EL  represents the average of low pixels, EH  represents the average of high pixels, and 

Erepresents the overall average of the picture. T represents the segmentation boundary between the low pixel point and the 

high pixel point of the segmentation, traverse its segmentation points from 0 to 255, calculate ρthe maximum value, and 

finally determine the required boundary T. Its calculation formula is as follows. 
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ρ = WL(EL − E)2 + WH(EH − E)2                              (11) 

The detection of the gauge needle is done by straight line detection using the Hough transform. The method used in Hough 

transform line detection is to represent the line in the Cartesian coordinate system with polar coordinates. A point in the 

polar coordinate system represents a straight line in its rectangular coordinate system. Find a point in the straight line of 

the rectangular coordinate system. All straight lines passing through this point represent a curve in polar coordinates, where 

the intersection point in polar coordinates Beyond the set threshold is our desired straight line. After obtaining the pointer 

straight line, establish a Cartesian coordinate system with the center point of the instrument as the center of the circle, 

calculate the angle formed by the pointer and the initial scale 𝛼, the maximum scale and initial scale of the dial are 270°, 

and then according to the dial scale, the instrument representation can be obtained. Its relational expression is shown below. 

𝜇 for its calculated meter reading, 𝛾𝑚𝑎𝑥 representing the maximum scale of the meter. 

𝜇 =
𝛼

270
× 𝛾𝑚𝑎𝑥                                     (12) 

4.EXPERIMENT AND RESULT ANALYSIS 

4.1 Automatic inspection of the experimental environment 

The head of the inspection robot is equipped with a high-definition camera to collect instrument images. The pan/tilt 

viewing angle can achieve 180° left and right, 130° up and down, the maximum elevation angle is 40°, and the minimum 

top view angle is 90°. The bottom tire of the robot can drive the camera for mobile shooting. The inspection movement 

speed is 3km/h. By simulating the automatic inspection environment in the laboratory corridor, 10 meters of different 

heights, different light intensities and different distances are placed for inspection and collection, and the collected images 

of the meters are transmitted to the host for subsequent detection, correction and reading processing. The automatic 

inspection robot is shown in Figure 5. 

HD Camera

PTZ

Inspection 
Trolley

 

Figure 5 Automatic inspection robot 

The experimental training and test environments use NVIDIA GeForce RTX 2060 (8GB), Windows 10 operating system, 

16GB memory, and the deep learning framework is pytorch1.2.0. 

4.2 Instrument key point detection experiment 

Since the instrument does not have a large data set publicly available, this experiment made the required data set. By 

simulating the images of the instrument in different environments, the inspection robot was used to capture the instrument 

images with different light intensities, different tilt angles and different rotation angles. A total of 8 types of instrument 

data were collected this time, and labelImg was used to label the key points of the collected 2778 photos to make xml files. 

The data set was divided into a 9:1 ratio, with 2221 photos in the training set, 247 photos in the validation set, and 275 

photos in the test set. a photograph. During network training, the PASCAL-VOC2012 dataset is used for pre-training 

weights. The training settings Batch_size is 8, the learning rate is 0.001, the decay coefficient is 0.0005, and the optimizer 

is Adam. When the Epoch is less than 100, the backbone network is frozen and only fine-tuning is performed on the 

network. When the Epoch is greater than 100, the backbone network is thawed and the learning rate is reduced to 0.0001 

to further reduce the loss function. When the training Epoch is 300, the network reaches convergence. 

The instrument images with blur, angle deflection, and uneven illumination are collected to extract key points to test the 

robustness of the training model. The results are shown in Figure 6 below. The experimental results show that the network 

trained in this experiment has strong robustness and can achieve good key point extraction results in different situations. 
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(a) Blur                      (b) Angular deflection               (c) Uneven illumination 

Figure 6 Image key point extraction 

4.3 Instrument image correction experiment 

Once the key point detection is complete, a rotation correction is performed first, followed by a tilt correction. The more 

the inspection robot is on a level with the instrument, the better the corrected picture of the instrument using the affine and 

perspective transforms will be after the target detection is completed. 

Experiments were carried out using equation (12) to calculate the meter reading and error rate before and after calibration, 

and the average error rate of the meter was calculated as shown below. 

𝜀 ̅ =
1

𝑁
∑ |

𝜇𝑟𝑒𝑎𝑙 − 𝜇𝑡𝑒𝑠𝑡

𝜇𝑟𝑒𝑎𝑙

|

𝑁

𝑖=1

× 100%                                                                   (13) 

N is expressed as the number of images of the test meter, 𝜇𝑟𝑒𝑎𝑙expressed as the real meter reading, 𝜇𝑡𝑒𝑠𝑡 expressed as the 

reading obtained through the experimental test, and 𝜀  ̅ expressed as the average error rate. 

In this experiment, by simulating the inspection environment, the inspection robot is used to collect 10 sets of instrument 

photos with different illumination, different deflection angles and blur degrees for testing. readings and error rates. The 

images before and after calibration of the meter are shown in Figure 7 below, and the measurement results are shown in 

Table 1 below. Figure 7(a) is the image before rotation correction, Figure 7(b) is the instrument image after rotation using 

affine transformation, and Figure 7(c) is the instrument image completed using perspective transformation. Extract the key 

point location information of the template image, and obtain high-quality meter images for subsequent readings through 

two meter corrections. 

 
(a) uncorrected image 

 
(b) Rotate the corrected image 

 
(c) Image after skew correction 

Figure 7 Before and after instrument calibration images 

Table 1 Test results of readings before and after meter calibration 

Serial number 
Actual 

value 

Pre-calibration 

reading 

Readings after 

calibration 

Pre-calibration 

error rate (%) 

Error rate after 

calibration (%) 

1 0.15 0.093 0.138 38.00 8.00 

2 0.27 0.201 0.258 25.56 4.44 

3 0.4 0.341 0.381 14.75 4.75 

4 0.55 0.574 0.559 4.36 1.64 
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5 0.7 0.642 0.665 8.29 5.00 

6 0.83 0.756 0.816 8.92 1.69 

7 0.9 0.856 0.879 4.89 2.33 

8 1.2 1.181 1.206 1.58 0.50 

9 1.35 1.159 1.336 14.15 1.04 

10 1.5 1.332 1.506 11.20 0.40 

Average error rate    13.17 2.98 

The experimental results show a reduction in the average error rate of 2.98% after calibration, which is 10.19% lower than 

the average error rate of the uncalibrated images and an average accuracy of 97.02% for the meter readings. 

5.CONCLUSION 

This paper proposes a computer vision-based automatic inspection and reading system for pointer-type instruments. The 

system consists of five parts: image collection by inspection robot, instrument panel detection, instrument key point 

detection, instrument image correction and instrument reading recognition. Using an inspection robot for automatic 

inspection to collect images, although it is not possible to adjust the shooting angle manually like a manual adjustment 

method so that the captured instrument image is in the middle position and the angle is correct, but through the detection 

and correction method proposed in this paper, not only The background can be removed very well to make the instrument 

image in the center, and through the two correction operations of the instrument image, the instrument greatly reduces the 

influence caused by the shooting angle. Compared with using traditional methods to extract dials and key points, it is better 

to use deep learning algorithm for dial detection and key point detection, and then rotate and tilt the meter according to the 

detected key point information, this method can get better correction effect and reduce the error rate of readings. For the 

calibrated instrument image, the pointer is segmented and the pointer straight line is obtained in combination with the 

traditional image processing method, so as to complete the reading. The experimental results show that the automatic 

inspection and reading system of the instrument proposed in this paper has strong robustness, good correction effect and 

high reading accuracy, and has strong practical value. 
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