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ABSTRACT
The optimization of an optical system benefits greatly from a study of its aberrations and an identification of each
of its elements' contribution to the overall aberration figures. The matrix formalism developed by one of the authors
was the object of a previous paper and allows the expression of image-space coordinates as high-order polynomials
of object-space coordinates. In this paper we approach the question of aberrations, both through the evaluation of
the wavefront evolution along the system and its departure from the ideal spherical shape and the use of ray density
plots. Using seventh-order matrix modeling, we can calculate the optical path between any two points of a ray as it
travels along the optical system and we define the wavefront as the locus of the points with any given optical path;
the results are presented on the form of traces of the wavefront on the tangential plane, although the formalism would
also permit sagital plane plots. Ray density plots are obtained by actual derivation of the seventh-order polynomials.

1. INTRODUCTION
In previous papers"2 it was shown that it is possible to determine coefficients for matrix modeling of optical systems
up to any desired order, computing power being the only limiting factor. Ref.2 lists the calculated seventh-order
coefficients for systems comprising only spherical surfaces.

The optical path length (henceforth designated opi) of any ray is the sum of the path length multiplied by the
medium refractive index, for all the media that compose the optical system. The matrix modeling of the optical
system is based on translations between reference planes and orientation changes at the surfaces separating two
different media. In the following paragraphs we will show that it is possible to evaluate the optical path for all the
translations incurred by any ray and add them up to get an overall opi between any two points on any ray path.

If a known wavefront is used as origin for the evaluation of all opis, then all subsequent wavefronts are loci of
points equidistant from the first wavefront in opi terms. It is then a question of preference the choice of method to
display the wavefront shape. The traces on the tangential and sagital planes lead to simplified calculations and we
will show examples of the former. Every departure from a spherical wavefront is a manifestation of aberrations; the
common choice for reference sphere is one that is centered on the paraxial image point and contains the center of
the exit pupil.3

Ray-density plots are also useful diagnosis tools because they are similar to the actual images that the system
will produce. We will use the analytical expressions of image-space coordinates to produce those plots.

2. OPTICAL SYSTEM MODEL
If complex coordinates are used, an axis symmetric optical system is modeled in the seventh-order by a product
of 40 x 40 square matrices with real elements, each describing a particular ray transformation. The elementary
transformations can be classified in four different classes:

. Translation: A straight ray path.

S Surface refraction: Change in ray orientation governed by Snell's law.

. Forward offset: Ray path between the surface vertex plane and the surface.

• Reverse offset: Ray path from the surface back to the vertex plane, along the refracted ray direction.
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The ray itself is described by a 40-element vector comprising the monomials of the complex position and orientation
coordinates that have non-zero coefficients. The product of all the elementary transformation matrices yields the
system matrix which must be right-multiplied by the incident ray vector to result in the exit ray vector.

The construction of elementary transformation matrices is facilitated by the method described previously.2'4
It can then be assumed that for any system comprising only spherical surfaces all the necessary coefficients are
known and the system is perfectly described up to the seventh-order. All the equations presented in the following
paragraphs, relating complex ray coordinates in the form of polynomials, were evaluated by matrix multiplication
using the software Mathematica. The size of the matrices and the complexity of the expressions imposes some care
on the choice of elements to display; we will usually show just the matrix element or the expression relevant for the
explanation under way.

In an aberration free optical system the wavefronts should have a spherical shape throughout, or could eventually
be flat in a limiting case.3'5'6 The departure from a spherical wavefront shape is the manifestation of aberrations.
In well designed systems a wavefront may have become become aspherical to be partially corrected further along
the system. The study of the distortions introduced on the wavefront by each of the elementary ray transformations
can greatly elucidate about the performance of a particular system and provide clues for an optimization procedure.
WaltherT9 has performed such optimizations using eikonals and computer algebra; in this paper we use matrix
formulation for the determination of wavefront shape at any point along a complex system.

The method consists on evaluating the opi of the rays as they are subjected to the successive transformations
and adding them up until any desired position along the system is reached; the result is the charateristic function
V(X, S, z,z') , X = x+ iy being the complex position coordinate, S = s+ it the complex orientation coordinate and z
and z' the positions of reference planes on object and image space, respectively6"0; s and t are the direction cosines
relative to axes x and y, respectively.

Point objects are defined by a set of fixed coordinates (x, y, z) and so the total opi for rays originating on a point
object depends only on the ray orientation and image plane position, V(S, z'). The locus of points with any given
value of the opi, expressed by the equation V(S, z') = constant, constitutes a wavefront6 whose shape can be plotted
or compared to a reference sphere. Before we start considering each of the elementary transformations in turn we
have to establish that in cases where the incident beam is parallel we will evaluate the opi from an incident plane
wavefront and find the locus of points with constant opi difference.

We will start by defining a generalized ray of complex coordinates (X, 5); this ray is described by the 40-element
monomials vector X&, built according to the rules explained by Kondo4 and Almeida.2 If the ray is subjected to
a transformation described by matrix M, then the output ray has coordinates (X', 5') and is represented by the
monomials vector X'&, such that:

X'&=MX&. (1)

In the case of a translation the orientation coordinate does not change and the opi for that transformation is
obviously given by:

nd nd
1 =

(1— 55*)1/2
=

(1 — 5151*)1/2
' (2)

with n being the refractive index of the optical medium, d the distance traveled along the optical axis and the
asterisk is used to represent conjugate. The product of one complex number by its conjugate is obviously one means
of finding the square of its modulus.

A surface refraction introduces an orientation change but no path length is involved and so it offers no contribution
to the total opi. One optical surface contributes to the opi through both the forward and reverse offsets, which are
not conceptually different from the translation; both are translations between the vertex plane and the surface,
respectively in the forward and the reverse directions, as represented in Fig. (1). It is legitimate to use Eq. (2)
to evaluate the path length contributions of these transformations, as long as d is not given a fixed value but is
evaluated for each incidence position; note, though, that there is a refractive index change from the forward to the
reverse offset, besides the change in the ray orientation. In the following section we will detail this procedure.

Plane waves with oblique orientation must be dealt with separately. As the ray coordinates are referenced to
planes normal to the optical axis and there are phase differences between the plane wave rays that intercept the
reference plane at various points, those phase differences must be accounted for by an opi given by:

1 = n(XX*SS*)h/2 = n lxi SI . (3)
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3. SINGLE REFRACTIVE SURFACE

8 (8+ 4SS* + 3828*2) XX* 8(2+ SS*) X2X2 SX3X3x1=x+ +
16r 16r3

+
16r5

x4 xi6l
= x+ [(8+4IsI2+31s4)+(2+sI2+

After refraction the ray's orientation coordinate is changed according to Snell's law; in the seventh-order approx-
imation the new coordinate is given by:
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Figure 1. The ray intersects the surface at a point Xi which is different both from the point of intersectionof the
incident ray with the plane of the vertex, X, and the point of intersection of the refracted ray with the same plane,
X2. The surface is responsible for three successive transformations: 1 — an offset from X to Xi, 2 — the refraction

and 3 — the offset from X1 to X2.

There is an implied assumption that the opi is zero for the ray that crosses the reference plane on the optical axis.

We first consider the case of a single surface with parallel incidence. According to the previous argument, the first
op1 that has to be considered is io given by Eq. (3), which accounts for the phase differences of the incident beam
when it crosses the surface vertex plane; this will obviously vanish if the rays are parallel to the optical axis, which
can always be verified by a single surface, if the axis is chosen appropriately.

For the position coordinate of the ray after the forward offset we refer to Fig. (1) and use the coefficients given
by Almeida2:

(4)

where r represents the surface curvature radius.
In order to use Eq. (2) we must first find d in terms of the incidence point X1; this is done by the following

equation: 1/2
d1 = r — (r2 — X1XflV2 = r —

(r2
—

1xi12)
. (5)

Now we can substitute Eq. (5) in Eq. (2) to obtain the forward offset path length i.
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ii (1
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16r6
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16r7 ' (6)

where ii represents the refractive index ratio from the first medium to the second.

The ray could now be traced back to the vertex plane along the S1 direction and the respective opi calculated.
We prefer not to do this but rather to use an equivalent procedure which consists on evaluating the next translation
op1 from the point X1 on the surface instead of from the vertex plane. The rays will now follow a straight path to
the image plane at some distance z' from the surface; e calculate the corresponding opi (12) by means of Eq. (2)
with d replaced by d2 = z' — d1 and S replaced by S1 taken from Eq. (6).

We are now able to evaluate the total path length, i,, in any position in the second medium, just by adding the
three contributions i =i + ii + i2.

4. WAVEFRONT PLOTS
In the previous paragraph we established the method to evaluate the path length for any ray as it intercepts any
given reference plane along the optical axis. In fact we defined a function of i (X, z') which is no other than the
characteristic function linking points on a wavefront in object space to points on a reference plane in image space.
In order to define the wavefront surface we must specify a reference value for the characteristic function and find the
locus of the points where that reference value holds; for convenience we take the value for the ray that intercepts the
reference plane on the optical axis and call this ir.

Fig. 2 represents a ray crossing a reference plane normal to the optical axis; the plane of the figure is not necessarily
a meridional plane but it is rather the plane defined by the ray and the normal to the reference plane on the point
of intersection. The ray coordinates on the point of intersection are (X', S') and the medium refractive index is n';
the optical path difference is given by the difference z := ir it . If we were to follow along the ray the distance

we would find a point with the same opi as the reference; this point is necessarily on the same wavefront as
the reference point.

From the figure we see that the projection of the distance s/n' on the reference plane is given by:

p=—,cosQ. (7)

The factor cos a can be decomposed on the direction cosines relative to axes x and y, leading to two components Px
and p, which must be added to the position coordinates of the intersection point in order to obtain the coordinates
of the wavefront point; in complex notation it is:

X"=X'+S'. (8)
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Figure 2. The figure represents a ray crossing a reference plane normal to the optical axis; the plane of the figure
is not necessarily a meridional plane but it is rather the plane containing the ray, which is normal to the reference
plane.

The position of the wavefront point relative to the reference plane is given by z", according to the equation:

z"=—jsina; (9)

again in complex notation this can be rewritten:

z" = (i —
S1SF*)l/2 (i s112)l/2 . (10)

The two equations (8) and (10) define a surface whose points have all the same optical path and so, by definition,
they are the wavefront equations.

5. NUMERICAL EXAMPLE
For this example we chose a convex spherical surface of 1 m radius, which marks the boundary between air and a
1.5 refractive index optical medium, upon which impinges a bundle of parallel rays; the optical axis is chosen to be
the line containing the center of curvature which is parallel to the impinging rays. This simple optical system has
a paraxial focal distance of 3 m and the paraxial focus is the center of all the aberration—free wavefronts considered
after refraction.

We want to depict the wavefront shape through its trace on the meridional plane; this allows an important
simplification, as the rays' position coordinate has null imaginary component and is thus represented by the real
component x; furthermore, the orientation coordinate is zero because all the impinging rays are parallel to the optical
axis. As a result we have x1 = x and from Eq. (5):

11 = d1 = r — (r2 — x)112 . (11)

The orientation coordinate after refraction, S1 , is real for all rays on the meridional plane and so it is represented
in lower case: S = s1 . This was evaluated by matrix multiplication but we could just as well have used Eq. (6)
with suitable substitutions. We applied Eq. (2) to evaluate the optical path contribution of the translation from the
surface vertex plane to a reference plane located 2.8 m after the surface; the refractive index was set to n =1.5 and
the distance was set to d2 = 2.8 — d1. Eqs. (8) and (10), with real position coordinates, were used to evaluate the
curve of the wavefront trace which was then plotted as shown in Fig. 3 superimposed on the traces of meridional
rays; these are naturally normal to the wavefront in every point. We notice that the ends of the wavefront are folded
and show a convex curvature, indicating spherical aberration. The points on the curve with zero curvature radius
are points on a caustic arising from the crossing of rays with different directions.
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Figure 3. Meridional wavefront trace for a single refracting surface, superimposed on the traces of meridional rays.
Notice that the ends of the wavefront are folded and show a convex curvature, indicating spherical aberration.

6. SINGLE LENS
We turn our attention now to a thin lens with oblique incidence. The lens is convex on the first surface and fiat on
the second surface, the convex surface has a curvature radius of 31.123 mm and the center thickness is 5.8 mm; the
glass is BK7, defined as having a refractive index of 1.5168. This lens has a nominal focal distance of 60 mm. The
rays incident upon the lens form a parallel bundle with a direction cosine s= 0.1.

The only added complication to the situation of the single surface results from the consideration of the second
surface, which marks the transition from glass to air with no associated curvature. The optical axis is now clearly
identified by the line normal to the fiat surface and containing the first surface's center of curvature and cannot be
aligned with the direction of incidence. Oblique incidence promotes the emergence of the various aberration terms
but does not imply any new equations.

The wavefront is studied at a distance of 52 mm and its meridional trace is plotted on Fig. 4. Again we notice
that the rays are normal to the wavefront and that the ends of this are folded backwards. The sharper bend of the
upper end is an indication of coma. The other aberration terms are not clearly noticeable on the figure because
in the case of astigmatism we would have to compare with the sagital plot and in the cases of field curvature and
distortion the wavefront is still spherical but its center is shifted from the paraxial position.

7. RAY-DENSITY PLOTS
In order to study the ray-density plots we use the lens of the previous example wit the image plane moved to a
position just past the tangential focus, i.e. 56 mm, because this is a natural position and also because all the rays
are divergent from this position onwards. This avoids the complication of having to deal with overlapping wavefront
folds, each of them contributing independently to the overall ray-density.

The overall system matrix for the lens above followed by a straight path to the image plane was evaluated with
the help of Mathematica and then right-multiplied by the input ray vector X& composed with the variable complex
position coordinate, X, and fixed orientation coordinate, s = 0.1. The result is a 40—element vector, the first of
which is a 7th—order polynomial on X, representing the dependence of the point of intersection on the image plane
on the input variable; we call this X'.

If it is established that the input beam has a uniform ray-density, then the image-plane ray-density is given by:

dX'
d=1/ --- . (12)
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Figure 4. Meridional wavefront trace for a single lens, superimposed on the traces ofmeridional rays. The sharper
bend of the upper efld is an indication of coma.

Now .X being a complex coordinate we can express it in the exponential form as X = and plug this into Eq.

(12) to get:
dX' i dX'd=l/ . (13)d d9

The value of the ray-density given by Eq. (13) was evaluated and plotted as shades of gray on a logaritmic scale
on the positions corresponding to the image coordinate X'. as shown on Fig. 5. The image is just as one would
expect. from a lens focusing an oblique beam of light.

8. CONCLUSION
Previous results had shown that optical systems could he modeled with matrices up to any desired order of approx-
imation and the necessary coefficients for axis-symmetrical systems built with spherical surfaces had already bean
reported. Those results have now been used to evaluate aberrations in non-standard ways.

An implementation of the seventh-order matrix algorithm in Mathematica allows the construction of algebraic
models for very complex systems. which can be used in various ways to judge their performance and quality.

The possibility of plotting wavefront shapes at any point along a complex optical system was demonstrated with
two simple examples but the same procedure could he used in more complex situations. Ray-density plots werealso
demonstrated, these providing a visualization of the actual image of point objects. It is expected that ray-density
plots can he integrated for exten(le(l objects. thus yielding the expected aberrated images given by real optical
systems.
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Figure 5. Ray density plot on a plane near the tangential focus.
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