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ABSTRACT

The perception of objects is a well-developed field, but the perception of materials has been studied rather little. This is
surprising given how important materials are for humans, and how important they must become for intelligent robots. We
may learn something by looking at other fields in which material appearance is recognized as important. Classical artists
were highly skilled at generañng convincing materials. The simulation of material appearance is a topic of great importance
in 3-D computer graphics. Some fields, such as mineralogy, use the concept of a "habit," which is a combination of shape
and texture, and which may be used for characterizing certain objects or materials. We have recently taken steps toward
material recognition by machines, using techniques derived from the domain oftexture analysis.

Keywords: Perception, materials, reflectance, BRDF.

INTRODUCTION: THINGS AND STUFF

Ask someone what vision is for and you may get an answer about recognizing objects. Few people will tell you that vision is
about recognizing materials. Yet materials are just as important as objects are. Our world involves steel and glass, paper and
plastic, food and drink, leather and lace, ice and snow, not to mention blood sweat and tears. Nonetheless, if you peruse the
scientific literature in human and machine vision, you will also find a great deal of attention paid to the problem of
recognizing objects, and very little to the problem of recognizing materials. Why should this be?

Perhaps it is related to the general preference we have for talking about "things" rather than "stuff.' Linguists distinguish
count nouns, such as chairs, from mass nouns, such as snow. Chairs are objects that can be counted, while snow is a material
of unspecified extent. Our world contains both things and stuff, but things tend to get the attention. This prejudice is
certainly true in perception. Even at the low-level stages of vision, Julesz speaks of his textons as "the quarks of vision," and
Marr built his primal sketch on lists of individuated edges and blobs. There seems to be a desire to put vision on a firm
foundation by emulating particle physics. However, classical physics is built on stuff (e.g. mass, heat, entropy), and Adelson
and Bergen[1} have argued that early vision can be thought of as the extraction of stuffish properties in an image. As we get
to high-level vision, physical materials become important, and they deserve more attention than they have received.

TilE IMPORTANCE OF MATERIALS

To appreciate the ubiquitous importance of materials in everyday !ife, one can survey the advertisements in a magazine. Here
is an ad for skin cream, or for silk scarves, or for milk, or for perfume, or for house paint, or for eye shadow, or for laundry
detergent. Consider the detergent: it is a material (detergent) that removes another material (dirt) from a third material
(fabric). It improves the fabric's looks, and in addition, it may influence a fabric's mechanical properties, such as softness and
flexibility, and even electrical properties such as static cling. Similarly, shampoo may give hair a "silky shiny look," and
"extra body," i.e., it may modify the optical and the mechanical properties.

Looking in a recent issue of a consumer magazine I found articles about iced tea, lipstick, paint, and glue. These arejust a
few of the materials that pervade our lives. We often care about a great many details of a material's properties. For example,
here is how the magazine described one brand oflipstick: "Ultima II Lipsexxxy Lipcolor (sheen/frost). Felt creamy while
applying but became powdery as it "dried " Easy to apply blot-resistant matte opaque not slippery Felt light on bps
Slightly easier to launder than others." In this short description, numerous optical, mechanical, and chemical properties are
discussed, and they are all important to the purchaser. Another magazine has a review of salami, and it describes Marco Polo

brand: "Dull appearance, slightly slimy mouth feel; good tasting though quite salty." Again, optical, mechanical, and
chemical descriptors are used.

Do we simply care about materials because we are made offlesh, and have to eat food, wear clothes, and excrete body fluids?
How would a robot feel? Ifit were a legged robot that walked over terrain, it would need to figure out what it was walking
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on. The walking technique will differ for grass, mud, gravel, or concrete. Suppose the robot is lucky enough to be walking
on a concrete sidewalk, and it sees a dark patch ahead. Is it a patch of asphalt? A puddle ofwater? A patch of clear ice? The
answer may be critical. Another example: if a robot colony is set upon Mars to build a factoiy, it must mine the right
materials and process them correctly.

Closer to home, suppose we have a domestic robot that will clean up the kitchen, and suppose that this robot encounters a
patch ofwhite stuff on the floor. It mightbe spilled milk, a crumpled napkin, a pile offlour, or some cream cheese. In each
case the robot must use the appropriate cleaning technique. A sponge will be useful for the milk but not for the crumpled
napkin. A vacuum cleaner will deal nicely with the flour but not with cream cheese. The robot should be able recognize the
materials, just as we can, and it should be able to reason about their physical properties before handling them

=1

Figure 1. A child can recognize a complex material such as ice cream, based on its optical and mechanical properties.
Today's machine vision systems can recognize certain objects, but are rarely useful in recognizing materials.

ASSESSING MATERIALPROPERTIES

Humans can infer material properties using all the senses. Wool has a certain look and a certain feel, and when wet it has a
certain smell. To test whether a wall is solid wood or mere paneling, we can knock on it and listen to the sound. We may
squeeze a pear to decide whether it is ripe, and then verify ourjudgment with the taste and texture when we bite into it,

The use of multiple information sources is formalized in mineralogy. The mineralogist in the field can characterize a mineral
by numerous means, including scratching it, fracturing it, heating it, and tasting it. Here are the properties of camallite, as
described in a field guide for rocks and minerals: "Soft (2.5), no cleavage, but has conchoidal fracture. Transparent with
vitreous or greasy luster. Exemely phosphorescent. As it is deliquescent it disintegrates quickly if exposed to air. Very
soluble in water. Has a bitter salty taste. Fuses easily, turning the flame violet (potassium)."

The present paper is about vision, so it is interesting to consider the vocabularies that have been developed for the visual
appearance of materials in various fields. In identifying rocks and minerals, a mineralogist will describe the luster (meaning
the optical quality ofthe surface), with words like resinous (like plastic), adamantine (like diamond), greasy, pearly, silky,
vitreous (glassy), metallic, submetallic, dull, earthy, or chatoyent (like a cats eye). When broken, the fracture may be
described as uneven, conchoidal (shell-like), hackly (like cast iron), or splintery. In addition, rocks and minerals have
"habits," which are descriptions oftheir typical forms. They include prismatic, massive (no particular form), acicular
(needle-like), reniform (kidney-like spherules), bladed, dendritic, granular, fibrous, encrusting, colloform, porous,
concretionary, botryoidal (like grape-bunches), foliated (leaves or layers, scaly, felted, hairlike, stalactitic, nodular,
columnar, plumose (feathery), microcrystalline, platy (flat thin plates), reticulated, lamellar, mammillary, saccharoidal (like
sugary, ameboid, oolitic, or pisolitic.

Few of us have a visual vocabulary that is as formalized as the mineralogist's, but we are all experts at "stuff perception"
from an early age. What would childhood be without mud, snow, or peanut butter? If we are to emulate human vision with
computer systems, we have a long way to go. Because machine vision has concentrated on objects, to the neglect of
materials apperance we have the situation shown in the cartoon in figure 1. The human boy is delighted to see the ice cream,
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which he irnrn diatel r cognizes based on ts v sual app arance. The robot, howev r has spent its life learnin t ide tf
objects and hasn t a clue bout ic ream it probably can't even misidentify the ice cream becau e it lacks the co cept ofa
material in th frst place. The best it can do s tell us ab ut the spoon

A science of rn terial p rception would be helpful in many field that depead on mage Fo ample h n a sat ilite s nd
back images of th Martian surface plan tary scientis s look at the pictures and try t figure out what the mate al are auid
what phys cal processe have acted upon them Fgur 2 hows a ecent set o Mars photographs that ndicate a history of
erosion perhap by water formerly on the surface. At present the main way to interpret such images is to show t em to a
trained individual and ask 'what does this look like to you7
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F gure 2 M r t rrain phot s obtained by sa ellite The appearanc o the surface suggests a history of rosion.

WHAT CAN VISION DETERMINE ABOUT MATERIALS?

Optical and mechanical properties are perhaps the majo ones e i er b looking t pictur s Con ider the objec hown on
the left in Fi . Y u m y recogni e it as a bottle opener Even i ou 0th ecogn ze the object ou can make a p etty ood
guess as to its shape and its matenal It appear to be made ofa hiny e al like steel You can guess that ifyou pi k it up it
\,\flll fee hard rigid and slightl cold Y u can gue s that ifyou use it to open bottle it will be trong enough toh Id its
hape Of course you might be wrong: it might be made of plastic that has been plated with a silvery coating But most of

the time you guess right about matenals just as most of he time ou guess nght about object shape and identity

Th image ofan bject results from a combination fthe urf c sh pe he surface reflectance the distributio oflights n
the environment, d the observer s point ofview Untangling th se multiple sources to retrieve shape and eflectance is an
amazin feat

Figure . Left a metal b ttl opener By looking at it one can estimate its hape as well as the optical propertie f its
urface Right a chrome plat d sphere shown in two settings The patte within each i a e is entirely different, but each

gives the imp ession of a mirrorlike material

As n mo t of vision material perception s auto at c and effortless and therefo e may seem initially like an easy problem
Howe er it is h d. One ofthe inhe ent d fficulties is shown by the two pictu es f sphere on the right. Even though the e
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are both the same shape, and even though they're made of the same material, they produce entirely differ patterns of light in
the image. A chrome-plated sphere simply reflects the world around it, as a distorted image. Thus, every time you see one it
looks completely different (at the pixel level) from all the other chrome spheres you have seen in the past. Yet there is
something about it that looks the same

Now most people are completely unaware that every time they see a chrome sphere they are seeing a picture of the room,
with alittle picture ofthemselves right in themiddle. The spherejust looks like shiny metal. Even though every pixel can be
traced to a point in the surrounding room, the metallic quality seems to lie in the sphere itself[2]. There is no way to extract
this property through a local operation, since it depends on the ftill pattern. And of course, there is no way to proceed with a
template match as one might do in recognizing, say, the letter "A." Instead there is some sort of quasi-textural quality that is
common to the many pictures of chrome spheres.

The problem is not unique to the mirror-like chrome surface. Consider the three spheres shown in fig. 4. The first has a
mirror surface. If such a surface is roughened on a fine scale, the reflected image becomesblurred. In the simplest model,
we can consider that each point on the sphere is taking a weightedaverage ofthe pixel values in the world over some angle.
The simplest idea is that our little sphere is surrounded by a big outer sphere, which is theworld as seen from the little
sphere. The big sphere's pixel values are convolved with a blurring function and mapped to the appropriate location on the
little sphere's surface and projected to form the image. (The big sphere is sometimes called an environment map). The same
convolution model holds for matte surfaces as well. In the case of a Lambertian surface, each point on the sphere takes an
average over a full hemisphere. (Note that the Lambertian hemisphere is centered on the normal to the sphere's surface, while
the blurring function for the roughened metal is centered on an angle twice as large, so the two processes cannot be reduced
to a single convolution).

The point is that the appearance of every sphere depends on the environment in which it is viewed, and sometimes this
dependence is so great that it would seem hopeless to make sense of the sphere's reflectance properties without knowing the
environment first. Yet for humans, this task seems fairly easy.

Figure 4. Three spheres, photographed in the same room with the same lighting.

The problem of recognizing a surface' s reflectance qualities is in some ways similar to the problem ofrecognizing a texture.
Suppose we have a Gaussian process that generates images ofwhite noise. Each noise image will be completely different
from the other noise images at a pixel level, but will look much the same at a textural level. Each image is a sample from the
same random process, and its appearance depends on the parameters of that random process. The same is true for a sphere
photographed in a randomly selected environment. The sphere-plusenvironment process generates the image. The world
around us has certain statistical qualities, and the sphere's reflectance parameters map these into image qualities.

In unusual settings, we can be fooled, For example, a shiny surface will not look very shiny if photographed in an
environment with broad diffuse illumination, Portrait photographers use large diffuse light sources when they want to
minimize the shine ofthe skin This tuck also minimizes the visibility of wrinkles
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CONFIGURATION AND CONTEXT

To fully characterize the reflectance properties of a point on a surface, one must determine the bidirectiona1 reflectance
distribution function BRDF). This is a function of four continuous variables that describes the relative intensity of light
emerging in every direction for each possible incident angle. It can be a huge and hopelessly complex function. Fortunately,
many materials can be approximately described with very simple BRDF's. Perhaps the simplest example is the Lambertian
surface, an ideal matte surface that reflects light uniformly in all directions regardless ofthe angle of incidence.

A Lambertian surface has only one parameter, which is its albedo: the percentage of incident light that is reflected. Thus,
describing the albedos in a scene amounts to assigning a scalar to each point. However, even though albedo may be defined
as a pointwise physical property, it cannot be computed from an image using a pointwise calculation. The larger context is
essential. Consider the image{3} on the left of fig. 5. The cylinder casts a fuzzy shadow onto the checkerboard. The actual
gray shade of the white square in the shadow is the same as the gray shade of the dark squares outside the shadow (i.e., the
pixel intensities are the same in the image). This powerful illusion results from the operation of the "lightness constancy"
mechanisms, which seek to determine the albedo of the surface in the scene, and to ignore the albedo of the pixels in the
image. In order to do this, the visual system must take into account a great number of configural cues about what is paint and
what is shadow[4,5}.

The importance of context is also shown in the image{5] on the right of fig. 5. The two regions marked by arrows are
identical; indeed they are simply the color ofthe white page. However, they appear quite different, due to the configuration of
gray levels and X-junctions around them. Indeed, it is not even possible to compare the two regions in terms of albedo. A
new perceptual variable, a kind of haziness, has become apparent. Thus at least two values will have to be used to describe
each point in the scene.

When we consider more complex surfaces, the importance of context continues to be apparent. Figure 6 shows a synthetic
image of a shiny sphere on the left. On the right is the same sphere with the two specular highlights removed. Now the entire
sphere looks matte. Observe that the sense of gloss or matteness spreads across the entire sphere, and is not restricted to the
specularities themselves. Again, the perceptual quality at a given location in an image can be influenced by pixels at distant
locations.

Tb 1it crLeci it t1 had8w tt y
a dark check i t1 brit erea.

Figure 5 Left the light square in the shadow is the same shade of gray ink as the dark squares outside the shadow Right
the two diamond-shaped regions marked by the arrows are the same white color.
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Figure 6. Left an mag of a hny sphere en rated by computer graphics Right the same sphere with the specularlties
renio ed The appeara e fthe mire spher s surface changes (Ima es by Roland Fleming after a demonstration by J cob
Becky

Vi ual cu 5 ofte tell us about more thanjust optical qu t es In particular the mechanical property of a material is often
expr ssed in its mag A ood example is fabnc hich drapes and folds in different ays depending on how stiff thick or
elastic it i Another ample i hown in Figure 7, whi h depicts two vi cous white substances. hand cream and cream
cheese in both ases a blob ofthe material h been swir ed with a spoon The hand cr am returns to a smooth even
surface while am ch se etains the peaks and valley

Figure 7. Left a blob of hand c eam and a blob of c eam cheese Both ha e been swl led with a spoon Right a flow
diagram showin how an ima e depends on me hanical and optical properties o the object and the environment

0 th right i flow dia am showing that how optical and mechanical spe ts ofthe world are c mbn d with the optical
and mechanical aspects ofthe matenal to produce an image. Le us tart with a chunk of natenal in some initial state Its
sh pe is then changed by the outside fo ces tha act upon it o er tim (e g the swirling b the spoon) s well as the
mechanical pr perties ofthe material itself (e.g elasticity iscosity etc ) We can refer to these as th e trinsi
mechanics and the intrinsic rnechani s The combinatio leaves the material in a c rtain shape The mat nal is then
Iluminated by some distribution of light n the environment and it reflect refracts or absorbs t e light accordm to its

optical properties In addition the observer (or the camera) i pos tioned at sonic viewin point in space looking in a certain
d rection with a c rtain focal apparatus The optic I propertIes inherent in the material are the intnnsic optics while the
ligh ing and ie in conditi n are extrinsic optics Shape ntnns c optics and e trins'c optic c mbme to f rm image
(0 cour e h re can al o be chemical hernial and other processes a work, but the m chanical and optical ones are oft n
the m st promin nt)

initial intrinsic extrinsic
SUite nscchmuiics mechanics

shape intrinsic extrinsic
opti:cs ojtics

inu*gc
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It is impossible to think that the observer can retrieve all ofthe variables that went into making the picture look as it does. In
particular, we may have only rough ideas about the extrinsic mechanics (the history of distortions the blob underwent) and
the extrinsic optics (the distribution oflights in the environment). However, we can do a reasonably goodjob ofguessing the
intrinsic mechanics and intrinsic optics ofthe materials. This is fortunate, since the intrinsic qualities are usually those that
matter most.

Food photography is an interesting sub-industiy within the photography business, and it places a particular emphasis on
material appearance. There are photographers who specialize in food, and stylists who specialize in optimizing its appearance
for the photographers. The food stylist is in charge ofgiving the mashed potatoes the proper thick, moist, warm look, by
cooking, shaping, spraying, or whatever is needed. The photographer arranges the lights and the camera to capture the look.
In preparing the mashed potatoes, the stylist establishes by intrinsic optics and mechanics (by cooking and mashing), and
then uses extrinsic mechanics to sculpt the potatoes to look a certain way. The photographer is mainly in charge of the
extrinsic optics: the lights and the camera. Photography catalogs have various supplies to support the profession of food
photography. Here is a sample entry: "Trengrove Aqua Gel: Use 'as is' for a variety ofeffects, ranging from water beads,
spilled water, melted ice, ice formations, and melted plastic. Applies easily to beverage containers to give a natural, cool,
refreshing look" It is wonderful to think that a natural, cool, refreshing look can come from ajar of gel.

RETURNING TO hABITS

One may think ofthe mashed potatoes as having a habit: a particular combination of shape and texture that signifies mashed-
potato-ness. Let us return for a moment to this concept, which was earlier used in the discussion ofrocks and minerals. The
notion of habit is often used in characterizing plants. On the left of figure 8 is a drawing of the typical shape of a pin oak in
winter. It is not a shape that can be template matched, since the particular branches are different for every tree. It is not a
texture either, since there is a top and a bottom, and a textural quality that changes from one part to another.

On the right are two pictures: a melanoma and a normal mole. They seem to be made ofa different kind of"stuff," and this is
apparent because of a combination oftheir shape, texture, and color. A popular mnemonic for the visual character of a
melanoma is ABCD: Asymmetrical shape; Borders that are irregular or indistinct; Color that is variable; Diameter greater
than 6 millimeters. This too can be thought of as a habit.

One might argue that the hand cream and cream cheese are characterized by their habits as well. They have no fixed form,
and no constant visual texture. The broad center of a hand cream blob has a different visual character than the roundly curved
boundaries. When everything is assembled into a coherent image, the hand cream's qualities become apparent.

Figure 8: Left: the habit of a pin oak. Center and right: A melanoma can be visually distinguished from a normal mole. The
combination of shape, color, and texture are used to make the diagnosis.
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UNDERSTANDiNG HOW IMAGES ARE MADE

To build a science ofmaterial appearance, it is useful to consider work in related areas. Ilista few here.

Ecological optics: Given the fundamental physics ofmaterials, one can ask what particular materials are common in the real
world, what forms they commonly take, and what patterns oflight tend to illuminate them. From these starting points, one
can ask how scenes in the world map to images. This is the forward problem ofhow images are made. Vision is the inverse
problem offiguring out what made an image. There has been recent progress in characterizing natural materials in the
laboratory [6,7}

3D computer graphics: A large body of work in computer graphics has been devoted to understanding reflectance and
making things look like they're made of the right stuff [8,9]. Plastic is easy, but flesh is hard. It is no accident that the
characters in today's blockbuster animations are often plastic toys or hard-shelled insects. It is very difficult to make
humans; their skin and hair must look just right, and they must move and deform correctly as well. The degradation of
materials is also needed to make them look natural, and this is a complex problem to simulate[1O].

The bottom line for most computer graphics is: does it look right to a person? Therefore, much of computer graphics is
embedded in a subjective psychophysical feedback loop. This is especially true for the rendering of materials. Since
physically correct rendering is impossibly expensive, the researchers try out various tricks and shortcuts, and ask themselves
whether it looks right; then they modify the procedure and look again. Unfortunately, the methods of 3-D computer graphics
can be hard to translate into an understanding of human vision. The optimization process is occurring a few steps removed
from the image itself, and so it is rarely clear what aspects of the 2-D image are responsible for a given perceptual
impression.

Traditional painting: the old master painters were highly skilled at portraying the materials in the scenes they painted. They
knew how to make a velvet robe look velvety, and how to make a silver goblet look silvery. This is very difficult to do.
Note that even an amateur can draw a shape well enough for an object (like a goblet) to be recognized. However, portraying
materials realistically is extremely challenging. Our visual systems are exquisitely sensitive to the way materials look, and
will not be satisfied by imperfect approximations. Artists are taught certain tucks, but mostly they just look very carefully
and over the years learn how to replicate the pattern oflight in the image. Unlike researchers in 3-D computer graphics, the
artists work directly with the image data, and therefore may have a great deal of knowledge that could be helpful for
understanding human vision.

2-D computer graphics: In a program like Photoshop, there are a variety of special effects tools for making beveled objects
that appear to made of plastic, metal, rubber, etc. These tools run in real time, and are based on a set of2-D image processing
tricks rather than on true 3-D material rendering. Because these tricks work with low-level operations rather than with
sophisticated 3-D rendering systems, they work near the level ofthe image itself. Therefore they may offer interesting
insights into human vision, since vision begins with the image data.

Photography: A studio photographer takes control oflight and camera. With experience, a photographer learns how to
control the way materials look A raking light will bnng out fine surface texture A diffuse light will minimize fine texture
and will then to make materials look matte rather than shiny. A "hair light" can be used in a portrait to bring out a glow
around the boundary ofthe head. And so on. By studying the tricks that photographers know, we may learn the tricks that the
human visual system uses in interpreting the photographs.
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Figure 9: Four images created by modifying an original image. (a) The original image of a chrome-plated sphere. The
histogram of pixel intensities (in the sphere image) is shown below. (b) the image after compressing the grayscale range of
the sphere image. (c) The result ofblurring the image, reducing the range, and adding a constant term. (d) The result of blur,
more compression and a larger additive term.

INFORMATION IN IMAGE STATISTICS

As noted earlier, the problem ofmaterial appearance bears some similarity to the problem oftexture perception. Multiple
stochastic processes, including the distribution oflights, combine to produce a particular image of a particular object. For
this reason, it is interesting to manipulate some simple image statistics of an image and see what happens to the material

appearance.

Figure 9(a) shows an original photo ofa chrome-plated sphere. The histogram ofpixel values within the sphere is shown
below. It covers a broad range of intensities as would be expected since it is merely reflecting a distorted image ofthe world.

In fig. 9(b) the same photograph has been modified by selecting the circular region ofthe sphere and compressing the
intensity range, so that everything becomes darker. The compressed histogram is shown below. The resulting image looks
like a black shiny sphere, such as a pooi ball made out ofblack plastic. It should not surprise us that it is possible to make a
chrome plated sphere look like a black plastic sphere since in both cases the dominant reflection is specular, with a different
magnitude. Note that for a real plastic sphere, the specular reflections would get brighter toward the edges due to the
increased efficiency ofFresnel reflection at grazing angles).

In fig. 9(c) the sphere reglon's histogram has been shifted upward and a Gaussian blur has been applied to that region. The
sphere now takes on the appearance ofbrushed or sandblasted metal Note that for an actual roughened sphere the blumng
will take place as a convolution in the sphencal domain rather than being umformly applied in the image plane (Equivalently
a space-vanant convolution could be applied in the image domain ) However this example shows that even a simple uniform
convolution produces a reasonable impression of a roughened metal sphere.

Figure 9(d) shows what happens ifwe take the image offig. 9(c) and compress the histogram further in the direction of
white. Now the sphere begins to take on a pearly appearance. This result makes sense ifwe consider that a pearl consists of
many thin shells of slightly inhomogeneous transparent matenal where Fresnel reflection and scattering can occur across the

multiple layers.

The experiments offig. 9 suggest at least two domains that might useful for characterizing material appearance. The first, in
the image domain, is the shape ofthe intensity histogram, The second would be in the frequency domain, where blur and
sharpness give us cues about the material being viewed, Space-domain and Fourier-domain statistics have been widely used
in texture analysis. However, in recent years it has been found that wavelet statistics are more useftil than Fourier statistics in
charactenzing textures Heeger and Bergen[1 1] found that two textures that matched both in terms of pixel statistics and
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wavelet coefficient statistics tended to look similar, and others have built on this notion to develop successful texture
synthesis techniques{12,13J. Image statistics have been proposed as useful in understanding the human perception of
materials as well[14}.

Ron Dror and I have followed a similar strategy in a machine vision system for characterizing the optical qualities of surfaces
viewed in real world settings[15]. For simplicity, we have concentrated on images of spheres. Since the environment tends to
contain a broad range ofluminances and numerous sharp edges, we expect these properties to manifest themselves inthe
specular reflections ofa sphere. Ifthe sphere has a finely roughened surface the specularities will be blurred and the high
frequency components will be removed. The diffuse component ofthe surface will provide a broad, gradually varying
additive component. A shiny black ball will have almostno diffuse component whereas a shiny white ball will have a great
deal. The white diffuse component will tend to serve as a floor that raises the intensities throughout the ball and
simultaneously lowers the contrast ratio ofthe specular reflections. The specular component itselfwill be larger or smaller
depending on the refractive index of the material, and whether the material is metal or dielectric.

Figure 10 shows a flow chart ofhow we actually have applied these basic ideas for analyzing and classifying the surfaces of
spheres. Ideally we would work in a coordinate system appropriate to the spherical surface. However, for simplicity inthe
present work, we take an annulus from our image and unwrap it into rectangular coordinates. The unwrapped annulus is then
analyzed in terms ofthe statistics ofpixel intensity distributions and the statistics ofwavelet coefficient distributions. These
measurements serve as features that are handed to a pattern classification system such as one using support vector machines.

Figure 10: A flow diagram for estimating the reflectance parameters of a sphere photographed under unknown lighting.
Right: classification results using two measurements.

We have tested this approach using both synthetic and real images. The synthetic images were made using the Ward model (a
variant ofthe well-known Phong model ) anda set ofpanoramic illumination images collected by Debevec[16}. We chose 6
sets ofWard parameters corresponding to black matte black shiny gray shiny white shiny white matte and chrome Each
sphere type was rendered under the same set of 9 lighting distributions, taken from indoor and outdoor scenes. The lighting
conditions were quite varied and so the images of a given sphere type appeared quite different from each other Our hope
was that a set of features could be found to that would allow the system to "ignore" the lighting and classify according to
reflectance parameters.

On the right offig. 10 is a plot ofthe categorization possible using only two features, namely, the 1O' percentile of the
intensity histogram and the variance of one ofthe wavelet subbands. Even with these two basic features, the classification is
quite good Using 6 features the classification becomes almost perfect and is comparable to that shown by humans for this
particular set of stimuli.

We performed a similar experiment using pictures of real spheres in real scenes. We used nine spheres with different
reflectances and photographed them in various indoor and outdoor locations Note that the spheres being real did not obey
Ward's model or any other simple reflectance model. This is all right since the classification procedure does not depend on a
model (This is one reason for prefemng a classification task rather than a parameter estimation task) After training on a
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subset ofthe images, we tested the system with images offamiliar spheres in novel environments. Again, with 6 features, the
classifier did about as well as humans.

There is a major limitation, of course: we have only worked with spheres. It should be straightforward to generalize to other
surfaces in which the surface normals are known everywhere, since the pixel values can be mapped onto a virtual sphere,
producing an equivalent sphere image (assuming distant illumination, and assuming the surface normals include a large range
to cover the sphere.) However, this is still quite restrictive, since in passive vision applications one rarely has knowledge of
surface normals. Nonetheless we find the results quite encouraging, since they indicate that simple image features can be
profitably employed in characterizing reflectance in unknown lighting.

ANALYSIS BY - SYNTHESIS

Analysis-by-synthesis is an approach that has been used to estimate parameters in simple polyhedral images, including shape,
lighting, and albedo[17]. In pilot work in my lab, Marshall Tappen is considering a toy world that includes smooth blobby
shapes with Phong/Ward surfaces. The photograph of fig. 1 1(a) shows an example: a bathoil capsule in the shape of a
penguin, with a white shiny surface. We are exploring an analysis-by-synthesis approach to modeling this and similar
scenes. We assume that the contour ofthe penguin is known; in the present case we extracted it by hand, but for simple
scenes like this one it could be automated. We assume a distant point source, and a Ward reflectance model plus an ambient
illumination term.

Figure 11. (a) A photograph ofa penguin shaped bathoil capsule. b) synthesized penguin image, based on estimated shape
and Ward reflectance parameters. (c) synthesized penguin with synthesized drop shadow, (c) sphere rendered using the same
lighting and reflectance parameters.

Given the contour, we wish to estimate the blob's shape, the light source direction, and the reflectance parameters. We
inflate the contour into a blobby shape by one ofvarious methods, In this case we use a grassfire algorithm to compute
distance from the contour and then apply a smoothing algonthm This produces an imtial guess for the shape We then use
heuristics to make initial estimates ofthe light source direction and ambient illumination. Given these starting points, we
synthesize the predicted penguin image, and run an optimization routine to find the shape and reflectance parameters that
give minimal squared error The result is shown in fig I 1(b) Although we do not have ground truth the estimated shape
and reflectances appear to be good.

To make a more realistic replica ofthe scene, we added a drop shadow, as shown in fig. 1 1(c). This was done with a simple
trick often used in 2-D graphics programs: we replicated the contour, filled it with gray, blurred it, and displaced it. We
estimated the shadow parameters in a feedback loop. (Note: the fact that the shadow is blurred shows that the prior
assumption ofpoint source illumination is incorrect indeed the shadow gives information on the size ofthe extended source
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We w'i impose more consistency as the woik progresses). Finafly, to give a better intuition ofthe reco ered reflectance
parameters, we used them to render the sphere of fig. I I d)

Although the penguin is iust a first step it offers encouraging possibilities for machine vision. Within a restricted domarn of
scenes it is possible to retrie\ e both shape and iefiectance parameters

CONCLUSIONS

The perception of materials is an important area that is still in its infancy The ;ipo1ance of material appearance is c1ear and
there are many fields devoted to controlling the way materials look (e g.. fabrics, food, paint), and in using images to convey
material properties (e.g. , computer graphics, art, photogi aphy). Mechanical and optical properties are the main ones ihat
humans derive from image information. Recent work suggests that concepts used in texture analysis may be usefully applied
to the problem of material appearance.
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