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ABSTRACT

The ear relies on nonlinear amplification to enhance its sensitivity and frequency selectivity. It has been suggested
that this active process results from dynamical systems which oscillate spontaneously. In the bullfrog sacculus,
hair bundles, which are the mechanosensitive elements of sensory hair cells display noisy oscillations. These
oscillations can be described in a simple model which takes into account the properties of mechanosensitive ion
channels coupled to motor proteins which are regulated by inflowing Ca2+ ions. The role of fluctuations can be
studied by adding random forcing terms with characteristic amplitudes that result from the number and prop-
erties of ion channels and motor molecules. This description can account quantitatively for the experimentally
measured linear and nonlinear response functions and reveals the relevance of fluctuations for signal detection.

1. INTRODUCTION

Detecting sounds from the outside world imposes stringent demands on the design of the inner ear, where
acoustic stimuli are transduced to electrical signals.1 The vertebrate ear contains highly specialized cells called
hair cells, which act as mechanosensors.2 Each of these cells is responsive to a particular frequency component
of the auditory input. In order to achieve high sensitivity and frequency selectivity, non-linear amplification is
necessary. Because of the viscous damping at microscopic scales, the familiar resonant gain of a passive system
is far from sufficient for the required demands.3

The ear relies on active systems to achieve exquisite sensitivity and sharp frequency selectivity.3–5 The most
striking evidence for active behaviors in the ear are so-called otoacoustic emissions which are sounds emitted
from the ears of mammals, birds and amphibians.6 It has recently been proposed that the ear contains active
dynamical systems which are close to an oscillating instability or Hopf-bifurcation.7–9 This concept can explain
many of the observed features of the ear, in particular, the nonlinearities that are generally observed at resonance
conditions,10 the interference effects of multiple frequencies11 as well as the occurrence of spontaneous emissions.

Although the cellular mechanisms that mediate this active process have remained elusive, in vitro12–14 as well
as in vivo15 experiments have revealed that the mechanosensory organelle of the hair cell - the hair bundle - can
generate active oscillatory movements that might underlie frequency-selective amplification. The observed noisy
oscillatory system exhibits the signature of a system near a Hopf bifurcation: The response to periodic stimuli
was nonlinear for sufficiently large amplitudes near the oscillation frequency.16 For small amplitudes there was
a linear response regime which exhibited stable behaviors. Comparing the linear response to the autocorrelation
function it was shown that the fluctuation dissipation theorem is violated, indicating the activity of the system.13

The hair bundles of vertebrate hair cells consist of about 50 stereocilia which are stiff, rod-like extensions of
the cell with a length of several micron and a diameter of about 300nm, see Fig. 1.5 The stereocilia merge
at the tip and are grouped in a bundle. Fine filaments, so-called tip-links form bridges between neighboring
stereocilia.17 The micromechanical properties of hair bundles in living hair cells can be rich and range from
adaptive movements in response to abrupt force steps with both fast and slow components,18 to spontaneous
oscillations.5, 12, 16, 19

Oscillatory instabilities of the hair bundle can be generated by at least three active mechanisms. First, a
collection of molecular motors with a region of negative slope in the force-velocity relation becomes self oscillatory
when the motor assembly is coupled to an elastic element.20 In the hair bundle, the myosin-based adaptation
motors in the stereocilia (reviewed in21) as well as the dynein motors in the kinocilium8 could provide such an
instance. Second, coupling Ca2+-mediated reclosure of the transduction channels18, 22–24 with gating kinetics7
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Figure 1. (A) Schematic representation of a hair cell with nucleus (grey) and a hair bundle of stereocila which is the
sensitive element of mechanosensory hair cells. It consists of 30-300 rod-like stereocilia which have a length of 1-10 µm
and are connected by fine filaments, called tip-links (green). The stereocilia contain mechanosensitive ion channels which
open as a result of mechanical stimulation (blue). Myosin motor molecules control the tension in the tip-links (red). (B)
open and (C) closed states of a hair bundle.

or intracellelular Ca2+ dynamics25 can yield hair-bundle oscillations. Finally, the interplay between negative
hair-bundle stiffness and the Ca2+-dependent activity of the adaptation motors can generate oscillations.26, 27

This third mechanism provides the most convincing description of the hair-bundle oscillations observed in the
bullfrog’s sacculus and leads to a quantitative description of observed hair bundle movements and mechanical
properties.28

2. ACTIVE HAIR BUNDLE MECHANICS

The dynamic behavior of the hair bundle can be described by three coupled equations:

λẊ = −Kgs(X − Xa − DPo) − KspX + Fext + η , (1)

λaẊa = Kgs(X − Xa − DPo) − γNafp(C) + ηa , (2)

τĊ = C0 − C + CMPo + δc . (3)

Eq. 1 describes the dynamics of the hair-bundle position X subjected to an external force Fext. The hair
bundle is subjected to friction, characterized by the coefficient λ, as well as to the elastic forces −KspX and
−KgsY , where Ksp and Kgs are the stiffnesses of stereociliary pivots and of the tip-links, respectively, with
Y = X −Xa −DPo. Channels are open with probability Po and channel opening is associatedd with a change of
the length of the tip link by distance D. Active hair-bundle movements result from forces exerted by a collection
of Na molecular motors within the hair bundle. By adjusting the gating-spring extension, these motors mediate
mechanical adaptation to sustained stimuli (reviewed in21). The variable Xa can be interpreted as the position of
the motor collection. Eq. 2 describes the mechanics and the dynamics of these motors by a linear force-velocity
relation of the form λadXa/dt = −F0 + Fmot, where λa characterizes the slope of the force-velocity relation. In
the hair bundle, the motors experience an elastic force Fmot = KgsY . At stall, these motors produce an average
force F0 = Naγfp that is proportional to the force f generated by a single motor and to the probability p that a
motor is bound to an actin filament, where γ � 1/7 is a geometric projection factor. Because adaptation depends
on the Ca2+ concentration C, we set p = p0 +p1C. Active force production by the motors corresponds to motors
climbing up the stereocilia, i.e. dXa/dt < 0, which tends to increase the extension of the gating springs and to
open transduction channels. In a two-state model for channel gating,29 the open probability can be written as

Po =
1

1 + Ae−(X−Xa)/δ
, (4)

where A = exp([∆G + (KgsD
2)/(2N)]/kBT ) accounts for the intrinsic energy difference ∆G between the open

and the closed states of a transduction channel and δ = NkBT/(KgsD).
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Figure 2. State diagram of the active hair bundle as a function of two control parameter, the maximal motor force fmax

in the absence of Ca2+ and the strength S of the Ca-feedback. The diagram reveals several regions: MO monostable with
open channels; MC monostable with closed channels; BI bistable and oscillations (OSC). Along the red line, the open
probability of ion channels is Po = 0.5.

3. STATE DIAGRAM

To explore the dynamic behaviors of the system described by Eqns. 1-3, we first ignore the effects of fluctuations
and assume Fext = 0. Steady states satisfy dX/dt = 0, dXa/dt = 0 and dC/dt = 0. Linear stability analysis of
these steady states reveals conditions for stability as well as for oscillating instabilities that lead to spontaneous
oscillations via a Hopf bifurcation.30 Because calcium dynamics at the motor site is expected to be much
faster than the hair-bundle oscillations observed in the bullfrog’s sacculus,31 we determine the state diagram for
τ = 0 (Fig.2). The state diagram is a function of two parameters: the maximal force fmax = Nafp0 produced
by adaptation motors along their axis of movement, and the dimensionless feedback strength S of the Ca2+

regulation. We assume that increased Ca2+ levels at the motor site reduce active force generation by the motors
(p1 < 0).

The state diagram exhibits different regimes (Fig. 2). If the force fmax is small, the motors are not strong
enough to pull transduction channels open. In this case, the system is monostable with most of the channels
closed. Increasing fmax leads to channel opening. For intermediate forces and weak Ca2+ feedbacks, the system is
bistable, i.e. open and closed channels coexist. For strong Ca2+ feedbacks, however, the motors can’t sustain the
forces required to maintain the channels open. Spontaneous oscillations occur in a region of both intermediate
forces and feedback strengths. Note that there is no oscillation in the absence of Ca2+ feedback, i.e. for S = 0.

4. EFFECTS OF FLUCTUATIONS

Spontaneous hair-bundle oscillations are noisy.13 Noise terms η, ηa and δc in Eqns. 1-3 formally take into
account the effects of various sources of fluctuations that destroy the phase coherence of hair-bundle movements.
The stochastic forces η and ηa act respectively on X and Xa. The consequences of these forces have been analyzed
for non-oscillating hair bundles.32 The fluctuations δc of the Ca2+ concentration in the stereocilia result from
stochastic transitions between open and closed states of the transduction channels.33 Noise terms are zero
on average. Their strengths are characterized by autocorrelation functions < η(t)η(0) >, < ηa(t)ηa(0) > and
< δc(t)δc(0) > respectively. We assume that different noise sources are uncorrelated and that noise is Gaussian.

Assuming that the motors are deactivated (f = 0), we first discuss thermal contributions to the noise. The
noise term η in Eq. 1 then results from brownian motion of fluid molecules which collide with the hair bundle
and from thermal transitions between open and closed states of the transduction channels. By changing the
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gating-spring extension, this channel clatter generates fluctuating forces on the stereocilia. The fluctuation-
dissipation theorem implies that < η(t)η(0) >= 2kBTλδ(t). The friction coefficient λ = λh +λc results from two
contributions: λh � 1.3 10−7N·s·m−1 accounts for hydrodynamic friction, which depends on bundle geometry
and fluid viscosity,18, 34 whereas λc results from channel clatter. The contribution λc can be estimated from
the autocorrelation function of the force ηc that results from stochastic opening and closing of N transduction
channels

< ηc(t)ηc(0) >� D2K2
gsPo(1 − Po)N

−1e−|t|/τc � 2D2K2
gsPo(1 − Po)N

−1τcδ(t) . (5)

Assuming that < ηc(t)ηc(0) >� 2kBTλcδ(t), we define a hair bundle friction λc which is associated to channel
opening and closing. Using Eq. 5, we estimate

λc �
K2

gsD
2Po(1 − Po)τc

NkBT
. (6)

Using typical parameter values our estimate reveals that channel clatter dominates friction and λ � 3 10−6N·s·m−1.

The noise strength resulting from stochastic motor action can also be estimated. Measurements of the initial
adaptation rate as a function of the magnitude of step stimuli35 imply that λa � 1.3 10−5N·s·m−1. The stochastic
activity of motors generates an active contribution ηm to ηa with

< ηm(t)ηm(0) >� γ2Nap(1 − p)f2e−|t|/τa � 2Naγ2p(1 − p)f2τaδ(t) . (7)

Here we have assumed that the Na motors fluctuate independently and that relevant time scales for a hair-
bundle oscillation are longer than τa which is the characteristic time of force production by the motors. This
noise strength can be described by introducing an effective temperature Tm defined by < ηm(t)ηm(0) >�
2kBTmλaδ(t). With f � 1pN, τa � 10ms and p � 0.05, we find Tm/T � Naγ2p(1 − p)f2τa/(kBTλa) � 0.5.
Writing < ηa(t)ηa(0) >= 2kBTaλaδ(t), we thus get Ta � 1.5T . Finally, we can show that fluctuations in the
Ca-concentration do not have a significant effect on the observed fluctuation of hair bundle motion and can be
neglected.28

5. LINEAR AND NONLINEAR RESPONSE FUNCTIONS

Fluctuations destroy the phase coherence of spontaneous oscillations and conceal the bifurcations between the
dynamic states displayed in the state diagram. The response of a noisy oscillating system to a periodic force
Fext = F1e

−iωt+F ∗
1 eiωt thus behaves effectively as that of a stable system. The response function χ(ω) = X1/F1,

where X1 is the amplitude of the phase-locked response, can be described for small stimulus amplitude by

χ0(ω) �
1

2

(
e−iα

iΛ(ω0 − ω) + K
+

e+iα

−iΛ(ω0 + ω) + K

)
. (8)

This response function is characterized by the stiffness K and the friction coefficient Λ. The phase α describes
the phase lag of the bundle’s displacement with respect to the stimulus at the characteristic frequency ω0.

Numerical simulations of Eqns. 1-3 allow us to canculate linear and nonlinear response functions of the system
in the presence of periodic force stimuli, see Fig. 3.28 The only free parameters are the feedback strength S and
the maximal motor force fmax. Along a line of constant open probability Po in the state diagram, we determined
the parameters in Eq. 8 as a function of fmax in the presence of noise. For Po = 0.5, the characteristic frequency
of spontaneous oscillations varies between a few Hertz and about 50Hz in the range fmax = 330− 800pN within
which a peak was detected in the spectral density of spontaneous movements. If α � 0, the linear response
function has the same shape as that observed experimentally,13 Therefore, we elected the value of the motor
force fmax � 352pN at which this condition was satisfied for Po = 0.5. At this operating point, the system
displayed noisy spontaneous oscillations X(t) that are similar to the hair-bundle oscillations observed in the
bullfrog’s sacculus.

The calculated linear response function χ0 as a function of frequency agrees quantitatively with the exper-
imental observations.13 At the characteristic frequency of the spontaneous oscillations, the sensitivity |χ| of
the system to mechanical stimulation exhibits the three regimes observed experimentally14 as a function of the
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Figure 3. Response functions calculated from numerical simulation of the model equations with noise terms in presence
of a periodic stimulus force. (A) Real part χ′ of the linear response function. (B) Imaginary part χ′′ of the linear response.
(C) nonlinear response function at fixed frequency 8Hz.

stimulus amplitude |F1| (Fig. 3C ): a linear regime of maximal sensitivity |χ̂0| = 8.5km·N−1 at ω = ω0 for small
stimuli, a compressive nonlinearity for intermediate stimuli and a linear behavior of low sensitivity for large
stimuli. The maximal sensitivity as well as the breadth of the nonlinear region are in quantitative agreement
with experiments. An important parameter that influenced the system’s maximal sensitivity is the stiffness of
the load to which the hair bundle is coupled. For fmax � 352pN, power spectra of spontaneous oscillations
and response functions were not significantly affected by varying Po in the range 0.2-0.8. Agreement between
simulations and experiments thus did not qualify a particular value of Po.

6. DISCUSSION

We have presented a physical description of active hair-bundle motility that emphasizes the role played by
fluctuations. The mechanical properties of oscillatory hair bundles in the presence of a periodic stimulus force
can be described quantitatively only if fluctuations are taken into account. Fluctuations arise in part from
brownian motion of fluid molecules and from the stochastic gating of transduction channels. By consuming
energy, the motors power frequency-selective amplification but also generate non-thermal fluctuations that add
to the inevitable thermal fluctuations. We find, however, that the magnitude of fluctuations due to active
processes remain below the level of thermal noise.

In the absence of fluctuations, an operating point on the line of Hopf bifurcations in the state diagram
would result in diverging sensitivity, infinite frequency selectivity and a compressive nonlinearity over many
decades of stimulus magnitudes. This situation is ideal for detecting oscillatory stimuli.7–9, 11, 36 As exemplified
by our analysis, fluctuations restrict the system’s sensitivity and frequency selectivity to oscillatory stimuli
as well as the range of stimulus magnitudes over which the compressive nonlinearity of the bundle’s response
occurs. Despite fluctuations, a single hair bundle amplifies its response to small stimuli and, correspondingly,
the characteristic compressive nonlinearity that arises near a Hopf bifurcation remains. One can define the gain
of the amplificatory process as the ratio of the sensitivity at resonance to small stimuli |χ̂0| and that to intense
stimuli. Both experiments and simulations indicate that active hair-bundle motility provides a gain of about ten.
Our theoretical analysis demonstrates that significant amplification happens inside the area of the state diagram
where the noiseless system oscillates. Interestingly, the global optimum of mechanosensitivity is obtained at an
operating point located near the center of the oscillatory region in the state diagram, thus far from the line of
Hopf bifurcations of the noiseless system. Furthermore, the sensitivity is largest if the open probability of the
transduction channels is 0.5.

The ability of a single hair bundle to detect oscillatory stimuli using critical oscillations is limited by fluc-
tuations which conceal the critical point. This limitation could be overcome if an ensemble of hair cells with
similar characteristic frequencies were mechanically coupled. Coupled noisy oscillators could approach the ideal
case of a critical oscillator near a Hopf bifurcation. In an intact mammalian cochlea, the gain that characterizes
amplification of basilar-membrane motion is up to 103,10 which can be compared to a gain of only about 10
for a single hair bundle in the bullfrog’s sacculus. This suggests that in the cochlea the effects of fluctuations of
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individual hair cells could be reduced by the cooperative action of many oscillatory cells, whether the oscillations
are provided by active hair-bundle motility or by a different mechanism.

We thank Thomas Duke, Martin Göpfert, Jim Hudspeth, and Jaques Prost for stimulating discussions.
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