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ABSTRACT 
 
 This paper summarizes recent themes of interest to this conference as well as the conferences of the 
Medical Image Perception Society (MIPS). 
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1.  BACKGROUND 
 
 I wish to thank our chairman and the organizers of this conference for the invitation to address this gathering of 
many of our distinguished colleagues and friends.  We represent a community that has been developing a culture whose 
purpose is the assessment of diagnostic technologies using finite (i.e., modest or “least burdensome”) resources.  Several 
of us have recently attempted to summarize the state of consensus development toward this goal.  The first major paper 
in this series reviewed some public experience and case histories of submissions to the FDA in the area of digital 
mammography and computer-aided diagnosis in breast and lung imaging (1).  A follow-up paper presented at one of our 
SPIE Medical Imaging Conferences provided some practical rules of thumb for investigators involved in designing 
studies in these areas (2). A PowerPoint presentation at an FDA Radiology Panel Meeting displayed some of the issues 
involved in extending this work to the area of lung nodule detection on CT scans (3).  We are currently in the process of 
putting together an up-dated version of some of these materials (4).  The purpose of this presentation today is to highlight 
some topics being formulated for the up-date, with emphasis on recent developments.  Definitions of the terms used 
below can be found in the references just provided. 
 
 

2.  THE KEY POINT OF ROC ANALYSIS 
 
 A comparison of two modalities in terms of a single sensitivity-specificity (Se/Sp) point for one modality versus 
that for the competing modality is only unambiguous if one of the modalities surpasses the other in both sensitivity and 
specificity.  (A slight extension of this point for the case of clinical laboratory tests has been given by Biggerstaff [5]). 
Otherwise, there is a trade-off between the two modalities which requires specifying a utility matrix and carrying out 
what is called “expected benefit” or “expected utility” analysis at those particular Se/Sp points [6].  On the other hand, if 
one measures the entire receiver operating characteristic (ROC) curve for both modalities, one can compare the full 
trajectory of the Se/Sp of one modality versus that of the other and the ambiguity can generally be resolved without 
struggling with the difficult specification of utilities.  The most popular introduction to these issues was given by Metz in 
1978 [7].    
 
 

3.  SCALES FOR MEASURING ROC CURVES 
 
 ROC analysis involves making measurements on observers of images and then analyzing the resulting data.  
The first or historic measurement scale for collecting such data was implemented by requesting the image reader to 
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report on a five- (or six- or seven-) category rating scale, ranging from “almost certainly normal” to “almost certainly 
abnormal”—through a set of intermediate categories.  This represented a breakthrough from the earliest ROC studies 
which required repeating the experiment multiple times with different utilities (or “payoffs”) and costs (or penalties) to 
the readers to get them to adopt different levels of aggressiveness toward making positive calls, and thus move them 
along their ROC curves.  Once the concept and use of the rating scale was introduced, it became possible to obtain the 
data required for an ROC study on a single pass.  The curve was generated by moving a threshold through the ratings – 
in the same manner as if the ratings were the output of a laboratory diagnostic test, e.g., the PSA test for suspicion of 
prostate cancer, and the Se/Sp generated as a function of the threshold just as is done for such laboratory tests. 
 
 Maximum-likelihood methods of curve fitting were developed to interpolate and extrapolate such data with 
smooth parametric fits.  To avoid some difficulties associated with convergence of such fits, investigators suggested 
using a quasi-continuous or 100-point probability-of-disease scale, often implemented by using a track-ball on a 
computer display of such a scale.  (It is curious that this is reminiscent of early psychophysical studies in which a subject 
would make a mark along a ruler or other visual analog scale.) 
 
 Finally, the patient-management—or so-called “action item”—reporting scale appears to be the most familiar 
scale for clinicians.  Such a scale distinguishes only between “no action” versus “follow up” or between “follow up” and 
“biopsy.”  The BIRADS categories for mammography [8] represent such a scale.  An often missed point is that the 
BIRADS document actually recommends that the radiologist provide to the referring physician an estimate of the 
probability of cancer.  Thus, the sometimes heard objection that a probability scale is not a practical clinical one does not 
stand up against the recent historical record. 
 
 

4.  THE HISTORIC NCI CONTRACT FOR AN ROC PROTOCOL 
 
 The revolution in imaging technology made possible with the advent of small computers in the 1970s had the 
dual results of great increases in diagnostic information from new imaging modalities (e.g., CT and MRI) as well as the 
concomitant increase in the cost of the technologies.  This led the National Cancer Institute (NCI) to write a contract for 
the development of a formal protocol for the collection and analysis of data for the purposes of ROC analysis.    The 
classic book by Swets and Pickett documents the evolution of this work [9].  The Advisory Panel gathered for this 
project included S. James Adelstein, Harold L. Kundel, Lee B. Lusted  Barbara J. McNeil, Charles E. Metz, and J.E. 
Keith Smith.   The emergence of the contemporary state of our field cannot be appreciated without referring to this work.  
We have the opportunity to receive some of the history of this period first-hand from Harold L. Kundel, M.D., a member 
of that Advisory Panel who is a frequent contributor to these SPIE Conferences. 
 
 

5.  THE COMPLICATION OF READER VARIABILITY 
 
 In the last decade, one study after another has documented the existence of a wide range of level of 
performance—i.e., reader skill—in studies of human observers using medical imaging systems.   This additional variable 
complicates the problem of ROC analysis.  The first formal and practical method for incorporating the uncertainty in 
performance assessment that arises from the range of reader level of performance was provided by Dorfman, Berbaum, 
Metz [10], the so-called DBM method.  This more general ROC paradigm is often referred to as the multiple-reader, 
multiple-case (MRMC) ROC paradigm.  Many of the early key references in this field are given in the first few 
references of the present overview [1-3]. 
 
 

6.  CONTEMPORARY DEVELOPMENTS IN MRMC ROC ANALYSIS 
 

 The DBM analysis of MRMC ROC data uses the jackknife resampling strategy in combination with a linear 
components-of-variance model and methods of inference based on multivariate-normal-based ANOVA to produce 
confidence intervals on the difference of mean performance across competing diagnostic modalities.  A somewhat 
different formulation and solution was soon presented by Obuchowski and Rockette [OR: 11, 12].   Hillis and colleagues 
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[13] made a discovery—somewhat surprising to devotees of one or the other approach—that the DBM and OR 
procedures yield identical test statistics under certain common conditions, but can lead to considerably different 
inferences due to their different methods of estimating the degrees of freedom of the denominator of the T2 (or F) test 
statistic used in these approaches.  Hillis et al. characterized the DBM model as a “working model” of the more 
fundamental OR conceptualization.   
 
 Hillis and Berbaum [14] and Hillis [15] made further developments that lead to what they call “new DBM”—
presented at the Medical Image Perception Society (MIPS) Conference in Windermere UK in 2005 [16].  These include 
a renormalization of the jackknife procedure, less data-driven testing of interaction terms in the denominator of the test 
statistic, and a fresh approach to estimating the degrees of freedom of the test statistic.  These modifications appear to 
almost eliminate the sometimes conservative inferences of the original DBM approach and offer the same or more 
statistical power for the same expenditure of resources.  The latter follows from the equal or greater number of degrees 
of freedom calculated in the new DBM method compared to that from the original DBM or OR methods together with 
the fact that the method has been validated over many variance-covariance structures. 
 
 Barrett, Kupinski, and Clarkson [BKC: 17, 18] have recently examined the MRMC ROC problem from the 
point of view of the fundamentals of probability theory, without the need for invoking any particular components-of-
variance model, linear or otherwise.  They also refer to their approach as a “mechanistic” one for the following reason.  
If one can define an imaging system and a method for training a sample of readers of the images (including, e.g., 
drawing a sample of image training cases from a specified ensemble or population of cases) and drawing a sample of test 
cases (e.g., from a specified ensemble, presumably the same as that from which the trainers are drawn), then one has 
completely specified the experiment and can study its statistical properties over Monte Carlo trials—without the need to 
invoke an abstract variance-covariance structure as used in the validations of the DBM approach.   At the present 
moment, their approach depends on using resampling methods to obtain practical results.  Also, they have so far only 
estimated variances; no inferential machinery, i.e., method for calculating C.I.s, has been proposed.  Nevertheless, their 
approach appears to be a fundamental reformulation of this central problem of our time and is open-ended with respect to 
future developments. 
 
 Gallas has presented a variation on the BCK approach, which he refers to as a “one-shot” solution [19, 20], for 
the case where the non-parametric Mann-Whitney-Wilcoxon statistic is used as the summary accuracy measure.  He uses 
the expression “one-shot” to indicate that no resampling is required to implement his method.  It is thus a multiple-reader 
generalization of the approach presented by Campbell, Douglas, Bailey [21] for the single-reader problem.   Also, in the 
spirit of U-statistics, his solution is unbiased by construction.  Gallas applied his approach to a family of twenty-seven 
experiments that involved finite training of model observers; the model observers were both noisy (from an internal 
noise source) and variously handicapped (by denying them access to a fraction of the image pixels).  His results are 
unbiased, as expected; the DBM analysis displayed a small bias for two or three of the experiments; however, the two-
way bootstrapping (cases and readers) used by Beiden, Wagner, Campbell [22] displayed very large biases in about half 
of his experiments, but almost no bias in the other half.  At last year’s SPIE Medical Imaging Conference, Samuelson 
and Wagner [23] showed that the bias observed in straightforward two-way bootstrapping could be remedied by a 
second-order approach to obtaining bootstrap confidence intervals, namely, bootstrap-t confidence intervals. 
 
 Bandos, Rockette, Gur [24] have recently demonstrated for the MRMC ROC problem a formulation of the ideal 
bootstrap—a method of obtaining statistical moments of an accuracy measure directly from the empirical distribution, 
without the need to do statistical resampling.  Their formulation allows them to identify the nature of the bias in the two-
way bootstrap in the context of the linear model.  Their surprising result shows that the bias in the simple two-way 
bootstrap persists asymptotically as the number of readers grows without bound.   Gallas has found an analogous result 
in his one-shot treatment that does not require the linear model. 
 
 A helpful by-product of the analysis by Gallas was a demonstration that the lowest-order terms of the BKC 
approach line up with the results that are obtained when using the linear components-of-variance model.  However, 
additional terms appear in the former treatment from differences across the normal and abnormal classes of patients, as 
well as several higher-order terms in the numbers of reader and case samples. 
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7.  THE ACRIN DMIST STUDY 
 
 Results from the ACRIN Digital Mammographic Imaging Screening Trial (DMIST) are now starting to be 
published [25].  This study shows the similarity of digital and conventional mammography when the entire cohort of 
patients is included, but also the great superiority of digital over conventional mammography for particular subsets of 
subjects (e.g., those with dense or heterogeneous breasts).  Several features of their displayed results are of great interest 
to our community.  
 
  The most obvious feature of their figures is the presence of a hook near the upper-right-hand corner of ROC 
space for all of the fitted ROC curves for conventional mammography.  Although it is physically possible that such 
hooks can arise from human or animal ROC studies, this phenomenon is more typically a result of the traditional 
binormal maximum-likelihood ROC curve-fitting algorithm; this algorithm allows such “Improper ROC” curves, i.e., 
where the slope of the curve does not change monotonically.  It is possible that the existence of hooks in the present 
analysis may slightly enhance the significance of the differences inferred across modalities.  We return to the issue of 
proper and improper ROC curves presently. 
 
 Another feature of the results is that the “empirical” or observed points in ROC space were obtained using a 
seven-category rating scale, and the non-trivial “interior points” fell between false-positive rates of zero and about 
twenty-five percent.  Moreover, the use of BIRADS categories to set the threshold for action in this study led to a false-
positive fraction in the neighborhood of 10%.  Such a result is consistent with the public-health philosophy that a 
screening modality should operate with a small false-positive fraction so as not to deter compliance with a national 
screening program.   The other low false-positive results from categorical ratings are also something that might be 
expected in a screening trial.  Such results—limited to only a fraction of ROC space—call out to be analyzed using a 
measure of the partial-area under the ROC curve as the summary index, as suggested by Baker and Pinsky [26] for the 
case of screening studies, rather than the total area under the ROC curve. 
 
 A curiosity in these results that many (if not most) investigators have not observed before is the way in which 
the false-positive fractions corresponding to the categorical ratings line up almost exactly for the competing modalities—
which then differ only in true-positive fraction—allowing for great simplification in the analysis of the latter.  While it is 
expected that the great number of normal cases will result in very high precision for the estimated false-positive 
fractions, there is no prior reason to expect the results across modalities to line up vertically as in this study.  A large 
number of readers were used in the study.  A given reader only read a given case once; and the digital and the 
conventional mammograms were read by different readers.  In this context, it seems remarkable that the average use of 
the category ratings turned out to be so consistent across modalities.  This is another issue that calls out to be understood 
at a more detailed level. 
 
 A satisfying result of this study is the fact that the BIRADS-based patient-management threshold always 
yielded Se/Sp points that fell almost on top of the ROC curves that were fitted to the seven-category data.  We return to 
this point below. 
 
 Finally, note that the present context is referred to as that of the “pooled reader” or the “generic reader.”  That 
is, the rating data is pooled and used as if it were due to a single reader and analyzed using the University of Chicago 
software CORROC.  There is no inferential algorithm or corresponding software to date that includes the variability of 
the readers over and above that of the cases in the analysis of such results. 
 
 

8.  AVAILABILITY OF RECENT UPGRADES IN ROC SOFTWARE 
 
 The following information comes from a recent personal communication [27].   Software has been developed 
and validated for maximum-likelihood estimation of “proper” binormal ROC curves [28], which do not allow hooks but 
otherwise provide the same fits as the conventional binormal model.  This software, referred to as PROPROC:  
 
  -  has been tested extensively with simulated and real data; 
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  -  allows the use of total-area or partial-area accuracy indices; 
 
  -  now exists in a new version of the University of Iowa/University of Chicago MRMC/LABMRMC software for DBM 
MRMC analysis that incorporates PROPROC, and should be available now from the University of Iowa website [29] 
(and soon from the University of Chicago website [30]); 
 
  -  and a standalone version of PROPROC (analogous to the traditional ROCFIT) will be available soon from the 
University of Chicago website. 
 
 

9.  A RECENT EDITORIAL 
 
 The consistency observed above between the BIRADS-based Se/Sp points and the ROC curves fitted to the 
seven-category data in the ACRIN DMIST study may require special training of readers, whether in that particular 
application or further applications where different versions of a categorical scale or a quasi-continuous probability scale 
or action-item scale are used.  (Note that the effectively seven-category new BIRADS rating scale—which expands 
category 4 to 4a, 4b, 4c—had not been published prior to the DMIST study.  Thus, there was no explicit attempt to line 
up their seven-category rating scale with a BIRADS categorization.)   A recent editorial [31] calls on professional and 
academic societies as well as interested industry and government bodies to work toward consensus and training toward 
such consistency to strengthen both the science and the statistical power of such studies.  This becomes even more 
important as we move toward an era in which multiple biomarkers will be fused by computer and combined 
quantitatively with human observer rating data both for diagnostic and prognostic classification of patients. 
 
 

10.  COMPUTER-AIDED DETECTION 
 
 Current studies of the use of computers to cue suspicious regions on images—the so-called “spell checker” 
mode or computer-aided detection (CADe)—often are complicated by the fact that the computer-aided human reader 
gains in sensitivity but possibly at a small increase in false-positive fraction.   An in-depth “effective benefit” analysis of 
this trade-off requires very large studies as well as historic databases of outcomes to provide the input to the utility 
matrix.  The contemporary holding pattern has been to carry out a modest “stress test”—using a set of images enriched 
with the target of interest (lung nodules, breast lesions, colon polyps, etc.) as a surrogate for a large realistic clinical 
“field study.”  In such stress studies, one collects probability-rating data to generate the full ROC curves of readers 
unaided versus aided by the computer.  In these studies it may be necessary to concentrate on training readers to use the 
scales of particular interest for the study in a self-consistent way, as emphasized in earlier paragraphs here.   It may also 
be important to elaborate methods for encouraging readers to provide readings that will fill up more of ROC space than 
was exhibited in the ACRIN DMIST study referred to above. 
 
 

11.  COMPUTER DIAGNOSIS 
 
 We are crossing the threshold of an era in which computers will be used not only as aids to readers but as 
primary diagnostic tests.  For example, genomic and proteomic microarray technologies are expected to lead to 
diagnostic classification using multiple biomarkers fused by a computer that has been trained with previous cases with 
known truth status.  This is the classical field of statistical learning machines.  There is a formal correspondence between 
the problem of assessing these technologies and the MRMC ROC problem sketched above.  Different radiologists are 
trained with different collections of patient cases—with differing amounts of total experience as well as range of case 
difficulty in their particular experience.  The performance of a trained radiologist using a particular imaging technology 
is then assessed using new, i.e., previously unseen, cases.  The correspondence with automated statistical learning 
machines is straightforward to make.  The conclusion for our present purposes is that the problem of statistical learning 
machines is a member of the family of multiple-random-effects processes that we have encountered earlier with the 
MRMC ROC problem.  
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 The most common form of assessment used for statistical learning machines is the method of cross-validation.  
In this method, the available samples (e.g., patient cases with known truth) are partitioned into, say, K groups.  The 
algorithm is trained with K – 1 of the groups and tested on the remaining group; this is then repeated K times, with each 
of the groups taking a turn as testers.  Cross-validation is a highly popular approach, especially in its extreme leave-one-
out version.  The well-known advantage of the latter approach is that its mean performance is characteristic of a training 
sample of almost the full size of the available sample (i.e., simply reduced by one sample) and, in that sense, it is almost 
unbiased. 
 

There are several disadvantages of cross-validation that are not widely appreciated [32, 33].  The first is that it 
is not a smooth estimator: small changes in the data can lead to large differences in the results.  This estimation method 
can therefore sometimes suffer much greater variability (e.g., larger variance and mean-square error [34]) than 
alternatives to be mentioned below.   Moreover, one usually intends to use cross-validation to estimate the performance 
of a classifier conditional on the available training set.   A very subtle and profound result is that cross-validation 
methods for regression and classification are only weakly correlated with this target conditional performance.  The 
methods therefore hold no privileged position among the alternative methods of estimating performance.  Finally, some 
investigators expect that the resampling involved in cross-validation incorporates a measure of the uncertainty over 
random training sets.  This is patently incorrect since the different training sets used in cross-validation are almost the 
same and thus are far from random samples of trainers. 

 
The points just listed were elaborated during the recent doctoral research of Waleed A. Yousef, Sc.D., a co-op 

student of Prof. Murray Loew of George Washington University and myself at CDRH/FDA.  Details of this work are 
presented in several publications [35-38].  For our present purposes it will suffice to mention that Yousef has extended 
the approach of “generalized cross-validation” of Efron [32] and Efron and Tibshirani [33] to the problem of estimating 
ROC total and partial area in the classifier problem.  In generalized cross-validation one draws from the available 
samples a bootstrap sample and uses this to train a classifier architecture of interest; the samples not drawn in the 
bootstrap sample are used as the testers—and the process is repeated many times.   This is a smooth version of cross-
validation that can be used in several different approaches to estimating the performance of a statistical learning 
machine.  Since it is smooth, it can also be used as a starting point for estimating the statistical influence function—a 
variational/perturbation approach that allows one to estimate the variance of one’s estimate of performance using 
differential calculus together with the original bootstrap samples. 

 
The ability to estimate the uncertainty in one’s estimate of performance provides the opportunity to use the 

results of a pilot study to size a larger pivotal study.  One observes the variance in the pilot study and compares this to 
the variance or error bars one requires for the purposes of a pivotal trial.  One can then estimate the size of the required 
trial compared to the original trial from the ratio of the variances—other things being equal. 

 
In a pivotal trial one is usually expected to follow what we call the traditional hygiene, that is, the requirement 

of having completely independent training and testing sets.  A formal approach to assessing performance in that 
setting—together with estimation of the resulting uncertainty—has also been presented by Yousef et al.  [38].  This 
problem is formally very close to the MRMC paradigm discussed above. 

 
Finally, Yousef et al. have also studied the partial area under the ROC curve for the classifier problem.   Several 

surprising results have been reported [37].  Practical applications of the approach are being explored in the course of the 
current year. 
 

12.  THE TWO ELEPHANTS STILL IN THE LIVING ROOM 
 
 Our mentor Harold Kundel always emphasizes that in practice every gold standard (or “truthing” mechanism) is 
imperfect.  He thus emphasizes that real-world studies are “agreement studies” – a concept toward which our community 
is ambivalent.  One reason for this ambivalence is our understanding and experience that assessment in the absence of a 
good standard of truth will naturally suffer much greater uncertainty than assessment in the presence of known truth [39].  
This uncertainty is equivalent to reduced statistical power for the comparison of interest in the study.    The problem of 
imperfect truth is one of the elephants in the living room that has been brushed over lightly by our community. 
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 Another elephant in the room has escaped our attention today because of time limitations, namely, the problem 
of location-specific scorekeeping and the associated issues of correlated (or “clustered”) reports.  Chakraborty has 
continued to make advances on this front and they can be reviewed by referring to his Website [40].  Chakraborty and 
Berbaum have recently presented validations of the JAFROC software under certain carefully prescribed scorekeeping 
rules [41].  They have acknowledged that the present approach does not yet address the problem of computer-aided 
detection where there are multiple false positives and one wishes to penalize an imaging system or computer aid for this.  
Many contemporary researchers are finding the JAFROC approach theoretically and practically useful for their 
investigations. 
 
 

CONCLUSION 
 
 The field of multivariate ROC analysis and associated methods continues to offer solutions to current problems 
of interest in the fields of diagnostic testing and imaging, as well as related computerized detection and diagnostic tasks.  
It also continues to present us with an inviting horizon for continued investigations. 
 
 The PowerPoint slides for this presentation may be obtained by contacting the author: 
robert.wagner@fda.hhs.gov 
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