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ABSTRACT: 

Graphene represents an important new material with potential Department of Defense sensor applications.  At the Naval 
Research Laboratory we have developed three techniques to produce large-area graphene films.  We have used this 
material to construct chemical and radio-frequency electromagnetic sensors.  Here we report the initial results of this 
effort.    
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1. INTRODUCTION 

Graphene, a single-atomic sheet of graphite, possesses extraordinary structural, electrical and mechanical properties.  
These extreme properties combined with recent advances in the ability to grow large-area graphene sheets open the 
possibility of a number of Depart of Defense applications.  Consequently, graphene is an important new material that 
merits substantial research and development.   

At the Naval Research Laboratory we have initiated an effort to exploit each of these unique properties for potential 
Defense applications.  We are utilizing graphene’s unique structure, in which every atom is a surface atom, for the direct 
electronic detection of molecular adsorbates1.  We are exploiting its extreme mechanical stiffness and strength to explore 
electromechanical devices2 for mass-based sensing, RF-filters, and mechanical switches.  Finally, we are using its high 
electron mobility and unique band structure to explore high-frequency, low-power radio-frequency (RF) transistors3.  

The viability of each of these applications has been greatly advanced by recent breakthroughs in the ability to synthesize 
large-area films of graphene4,5 and chemically modified graphene1,2.  The initial experimental investigations of graphene 
were performed on microscopic exfoliated flakes, which provided high-quality material but made device development 
extremely labor intensive.  Recently, however, a number of methods have been developed for forming large-area sheets 
of graphene.  These methods include spin-coating films of chemically modified graphene1,2, the thermal decomposition 
of SiC wafers4, and chemical vapor deposition on catalytic Cu foils5.  Each of these approaches has advantages and 
disadvantages for various applications.  Thus, we have explored the use of all three types of films for the three 
application areas mentioned above. 

 

2. LARGE-AREA GRAPHENE  

We prepared spin-coated films of chemically modified graphene (CMG) by suspending graphite oxide powder in a 
solution of methanol and water.  The solution was centrifuged to remove large particles and then spin-cast onto a 
substrate rotating at 4000 rpm.  The spin-cast GO films were then annealed in air to remove residual solvent and then 
annealed in hydrazine vapor to reduce the GO back toward graphene. Details of the process can be found in Refs. 1 and 
2. The resulting films range in thickness from 1 nm to 5 nm, are mechanically robust and electrically conducting (~ 104 – 
105 Ohms/square).  The low electron mobility of the films (~ 0.01 cm2/Vs) excludes high-performance electronic device 
applications.  However, we find that these chemically modified films of graphene are well suited for sensor and 
microelectromechnical applications as described below. 
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