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ABSTRACT 
 
Stress can have a significant negative impact on health and stress-induced alterations in sleep are implicated in both 

human sleep disorders and in psychiatric disorders in which sleep is affected. We have demonstrated that the amygdala, 

a region critical for regulating emotion, is a key modulator of sleep. Our current research is focused on understanding 

how the amygdala and stressful emotion affect sleep and on the role sleep plays in recovery from stress. We have 

implemented animal models to examine the how stress and stress-related memories impact sleep. Experiencing 

uncontrollable stress and reminders of uncontrollable stress can produce significant reductions in sleep, in particular rapid eye 

movement sleep. We are using these models to explore the neurobiology linking stress-related emotion and sleep. This 

research is relevant for sleep disorders such as insomnia and into mental disorders in which sleep is affected such as 

post-traumatic stress disorder (PTSD), which is typically characterized by a prominent sleep disturbance in the aftermath 

of exposure to a psychologically traumatic event.  
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1. INTRODUCTION 

 
Interactions among stress, sleep, and arousal systems are recognized factors in the etiology of a variety of medical 

disorders.  By definition, stress produces arousal [1] and can have the potential to alter subsequent sleep. Highly stressful 

traumatic life events virtually always produce at least temporary sleep disturbances that may include insomnia or 

subjective sleep problems [2] and the persistence of these disturbances may be predictive of the future development of 

emotional and physical disorders [3, 4]. Sleep disturbances also are commonly associated with stress-related disorders 

and difficulties with can be the primary complaint of post-traumatic stress disorder (PTSD) patients [5]. 

 

There are significant overlaps of the neural circuitry and neurochemistry underlying the stress response and the neural 

systems regulating arousal and sleep. Thus, it is not surprising that the interaction between stress and sleep is implicated 

in a variety of disease processes and psychiatric disorders. However, it also is important to note that even significant 

stress can be experienced without producing permanent or pathological changes. The stress response engages the 

physiological and behavioral resources needed to cope with a life challenge and it is usually is followed by a return to 

normalcy when the situation is resolved. Indeed, the purpose of the stress response is to restore homeostasis [1], which 

may include alterations in sleep. 

 

In this review, we will discuss the complex relationship between stress, sleep and arousal by examining the effects of 

stress on sleep, stress parameters that appear to be important in determining post-stress sleep and the role of the 
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amygdala in regulating the relationship between stress and sleep. Lastly, we will discuss current concepts linking stress 

and sleep in stress-related disorders. 

 

2. STRESS  
 

Stress is broadly defined as a nonspecific physiological response to a situation or event that is psychologically or 

physiologically demanding [1]. In response to stressors, neurochemical mediators are released that act acutely to 

promote adaptive physiological and behavioral responses to the existing challenge [1]. This includes activation of the 

hypothalamo-pituitary-adrenal (HPA) axis as well as the sympathetic nervous system and the adrenal medulla, (the 

sympathoadrenal system) [1, 6] to initiate and regulate behavioral and physiological adaptations to the challenge as well 

as the restoration of homeostasis when the threat is removed [1].  

 

Problems can arise when the stress response is inadequate to meet the challenge or the stress system is overcome by 

intense or prolonged stressful events. In this case, stress can have a significant, long-lasting negative impact on health [7-

9] and severe stress has been linked to the genesis of mood and anxiety disorders. However, stressors are commonly 

encountered in daily life without producing permanent or pathological changes. Even the traumatic life events that can 

give rise to PTSD do so in only a percentage of the population [10-12] whereas the majority of individuals may cope 

with similar situations while exhibiting only transitory detrimental effects arising from the experience. The difference 

between successful and unsuccessful coping with stress and whether it has transitory or lasting effects can vary with 

characteristics of the stressful event including its duration, intensity [13, 14], predictability [15, 16] and controllability 

[17, 18]. Differences in resilience and vulnerability are also significant factors in the ability of an individual to cope with 

stress [19].  

 

3. SLEEP AND AROUSAL STATES 
 

Mammals (and birds) exhibit three basic arousal states: wakefulness, non-rapid eye movement (NREM) sleep and rapid 

eye movement (REM) sleep. NREM and REM sleep are also known as slow wave sleep and paradoxical sleep, 

respectively. NREM sleep is characterized by high-amplitude, low-frequency (e.g., 0.5 – 4.5 Hz) waves recordings in the 

encephalogram (EEG). REM sleep is characterized by an EEG with low amplitude, higher frequency activity more 

typical of a waking animal at the same time that there is a nearly complete loss of voluntary muscle tone and the 

maintenance of behavioral quiescence. REM sleep can be distinguished behaviorally by involuntary twitching and 

jerking that occurs on a background of muscle atonia. Sleep in mammals also can be identified behaviorally by (i) a 

typical posture, (ii) behavioral quiescence (iii) increased stimulus threshold for arousal to an alert state, and (iv) rapid 

reversibility to wakefulness once aroused [20].  

 

A full discussion of neural regulation of sleep is beyond the scope of this paper; however, various brain regions located 

from the forebrain to brain stem have been implicated in the generation and expression of sleep-related neural activity.  

Rostral regions include the basal forebrain-preoptic area which contains sleep-active neurons that begin to fire during 

drowsiness and then fire maximally during NREM [21]. Electrophysiological studies of these neurons [21] as well as 

lesion [22, 23] and stimulation [24, 25] studies in this region suggest that they may have a role in triggering NREM. The 

ventrolateral preoptic (VLPO) region of the hypothalamus also has demonstrated roles in regulating both NREM and 

REM sleep [26, 27].  

 

Caudally in the brain, the pons contains three cell groups that are central to prevailing conceptions of how REM sleep is 

generated: cholinergic neurons in the laterodorsal tegmentum and peduculopontine tegmentum (LDT/PPT), 

noradrenergic (NA) neurons in the locus coeruleus (LC) and serotonergic (5-HT) neurons in the dorsal raphe nucleus 

(DRN). Putatively cholinergic REM-on cells in LDT/PPT progressively increase their discharge from W to NREM to 

REM sleep and may be possible generators of REM (reviewed in [28]). Both NA neurons in LC and 5-HT neurons in 

DRN are most active in W and reduce their discharge rates during sleep until they fall silent in REM, giving rise to the 

idea that their silence may play a permissive role in REM generation (reviewed in [28]). The forebrain also has an, as 

yet, poorly understood role in the control of REM sleep, though it appears likely that any forebrain influence on REM 

sleep would be exerted on REM sleep generator regions in the pons.  
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Studies of sleep control have concentrated on three basic regulatory processes. Sleep is homeostatically regulated such 

that sleep deficits are followed by compensatory increases in sleep [29-31]. Homeostatic processes are responsible for 

the increase in “sleep pressure” during wakefulness and its subsequent dissipation during sleep (Reviewed in [29-31]). 

Homeostatic processes also account for compensatory increases in sleep that follow sleep deficits [29]. Circadian 

processes regulate “sleep propensity” in a clock-like fashion within the 24 hour day (Reviewed in [29]) and ultradian 

processes are reflected in alternating periods of NREM and REM states within sleep ([32]). These processes can account 

for the internal “drive” for sleep and for the influence of periodic geophysical zeitgebers such as light on the normal 

distribution of sleep and wakefulness throughout the day. However, organisms must contend with both periodically- and 

randomly occurring stressful environmental and social events that can have significance for health and even survival. 

The ways in which these factors affect the relative occurrence of sleep and wakefulness and the neural linkage between 

the stress system and sleep are poorly understood. 

 

4. STRESS-INDUCED SLEEP DISTURBANCES  
 

Stress can be a significant factor in insomnia [33] which has been hypothesized to be a disorder of hyperarousal in the 

central nervous system and not actual sleep loss [33, 34]. This hypothesis is based on data that the HPA axis is more 

active in insomniacs, who show higher levels of ACTH and cortisol, than do individuals without insomnia [33, 34]. 

Based on elevated HPA axis activity and the fact that elevated levels of nocturnal cortisol found in insomnia are markers 

of elevated corticotropin releasing hormone (CRH), it has been suggested that treating the underlying disturbance in 

CRH could be a potential treatment for insomnia [35].  CRH also acts in the brain to regulate arousal and sleep [36, 37]. 

 

Stress-related disturbances in sleep are also factors in stress-related disorders. For example, sleep problems and insomnia 

are core features of PTSD [5] and alterations in both REM and NREM sleep have been reported. Alterations in REM 

sleep have not been fully explained. REM sleep in PTSD patients has been variously reported to be increased [38], 

decreased [39, 40], or to show differences in architecture, but not amounts [41, 42]. There also are significant changes in 

NREM sleep in PTSD [40] including reductions in both visually scored delta sleep and EEG delta amplitude (reviewed 

in [43]). Neylan et al. [43] suggest that the changes in NREM sleep and delta may involve persistent increases in CRH 

activity coupled with either enhanced negative feedback or downregulated CRH receptors.  

 

Interestingly, the decreased REM sleep [44-46] and increased light NREM sleep [44] reported in rats and mice after 

extensive training with inescapable footshock  are consistent with many of the findings of PTSD. However, while 

significant sleep disturbances occur in PTSD, delineating the role that stress-induced alterations in sleep might play in 

the genesis of the disorder is difficult. There are few studies of sleep in the immediate aftermath of traumatic stress and 

Mellman et al. [47, 48] made the important point that studies conducted months, years or even decades after the 

traumatic event may be influenced by factors not related to the development of PTSD. Only a few studies have examined 

sleep in the initial stages of PTSD. Polysomnographic studies conducted within a month of a traumatic experience found 

a more fragmented pattern of REM sleep characterized by shorter average duration REM sleep episodes before shifting 

stage or awakening in PTSD patients compared to patients without PTSD and a non-traumatized comparison group [47, 

48]. There were also a greater number of REM sleep episodes in the PTSD patients than in patients that experienced 

trauma without developing PTSD. These data collected earlier in the progression of PTSD suggest that disturbances in 

REM sleep may be important for stress-related pathology. Mellman et al. [47, 48] suggested that intact REM sleep may 

in aid in the processing of the memory for trauma and we, based on our work with animals, have suggested that REM 

sleep may play an adaptive function in recovery from stress [49]. 

 

5. EXPERIMENTAL STRESS AND SLEEP 
 

There has long been an interest in determining the effects of stress on sleep using animal models and sleep has been 

recorded after a great number of experimental stressors including avoidable footshock [50, 51], restraint [52-60], water 

maze [50], exposure to novel objects [61-64], open field [62, 64], ether exposure [65, 66], cage change [62, 64] and 

social stress [67, 68] (for a comprehensive review see [69]). This has produced a significant body of work describing the 

effects of a variety of stressors on sleep. However, for the most part, these studies have provided little real insight into the 

mechanisms by which stress alters sleep. 
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One promising line of work has begun to examine the role of stressor control and stress-related memories on sleep using 

variations of fear conditioning and learned helplessness paradigms. Fear conditioning is typically utilized as a learning 

paradigm in which an association is made between previously neutral auditory cues or situational context information 

and the presentation of an uncontrollable stressor (usually footshock). Afterwards, presenting the fearful cues or contexts 

alone elicit physiological and behavioral responses similar to those produced by the footshock stressor. By comparison, 

most variants of learned helplessness train animals with controllable and uncontrollable stress (usually escapable and 

inescapable footshock) using a yoked design such that both animals receive identical amounts of shock. Subsequently, 

many of the animals trained with inescapable footshock will show deficits in performance in situations where escape is 

possible [70]. The advantage of paradigms like conditioned fear and learned helplessness is that they allow the 

examination of both the actual stressor and of memories of previously experienced stress on behavior and sleep. This has 

tremendous value for modeling processes related to the long-term effects of stressful events. Indeed, stress-related fear 

conditioning is thought to play a significant role in the development of anxiety disorders [71, 72] and PTSD [9, 73] and 

learned helplessness has been used to model depression [74].  

 

Studies of fear conditioning typically have focused on memory mechanisms and have measured immediate responses to 

fearful cues or contexts, or to their effects on modifying responses to other stimuli. Thus, behavioral responses such as 

freezing (e.g., [75-77]), and fear-potentiated startle amplitude are well established [78, 79] and have been used to assess 

fear memory and fear extinction, a type of new learning that inhibits subsequent fear behavior without erasing the 

original memory for fear conditioning [80]. 

 

Fear conditioned alterations in sleep are also now well-established though the specific changes produced in sleep can 

vary with amount of training, animal strain and training conditions. Brief training as generally used in studies of fear 

memory have been reported to increase NREM sleep [81] whereas extensive training has been associated with 

alterations in both NREM and REM sleep. These alterations are generally greater and of longer duration in stress 

vulnerable strains, consistent with the role of resilience and vulnerability in stress responses [19]. With extensive 

training with inescapable footshock, the primary and most consistent effect is a marked reduction in REM sleep (Figure 

1) that occurs both after the shock training and after presentation of shock-associated fearful cues and contexts [45, 46, 

49]. Reduced REM sleep has been reported across species and across strains [45, 46, 82] and can occur without rebound 

or recovery REM sleep [83]. By comparison, enhanced REM sleep has been reported to occur after virtually all other 

experimental stressors.  

 

We have found reductions in NREM sleep after shock training and fearful contexts in some strains and not in others 

[45]. Increased light slow wave sleep and decreased REM sleep have been reported in rats after extensive, inescapable 

shock training [44]. There also may be relatively less EEG delta (slow wave activity) during NREM sleep in animals that 

show greater fear-conditioned changes in sleep [84]. Thus, both increases and decreases in NREM sleep and variations 

in NREM EEG spectra can occur after shock training, though the reason for these differences are not known. 

 

While much emphasis has been put on the role fear conditioning in the long-term negative consequences of stressful 

events, it also can underlie adaptive behavior that occurs only so long as the fear-inducing stimulus is predictive of, or 

associated with, an aversive event [72, 85]. For example, after shock training, repeated presentation of a fearful cue or 

context without a shock contingency typically results in fear “extinction.” It is the failure of extinction that has been 

linked to stress-related psychopathology (e.g., PTSD [86]) though the processes that make behaviors resistant to 

extinction remain mostly unknown.  

 

There appears to be a relationship between extinction and sleep. Both NREM and REM sleep normalize following 

extinction of contextual fear whereas rats that continued to show fear exhibited reductions in REM sleep [87]. 

Additionally, post-training REM sleep deprivation has been reported to impair extinction (as indicated by freezing) for 

light cues [88], but not for auditory cues [89] previously paired with shock. REM sleep-deprived rats did show greater 

spontaneous recovery of freezing on a second day with presentation of the fearful auditory cue alone. In contrast, post-

training REM sleep deprivation did not significantly alter contextual fear extinction learning or spontaneous recovery of 

freezing on a second day of testing [88, 89].  

 

In summary, stress, stress-related memories and fear extinction can have a significant impact on sleep that likely plays 

roles in determining whether or not stressful events produce persisting or even permanent effects. Thus, delineating the 
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linkage between stress and sleep will be important for fuller understanding the processes by which stress can negatively 

influence health and behavior.  

 

 
 

6. Amygdala and Stress-Induced Alterations in Sleep and Arousal  
 

Several lines of evidence suggest that the amygdala plays an important role in regulating the linkage between stress and 

sleep. The amygdala has generally become regarded as the center of emotion in the limbic system [77]. It has a well-

 

Figure 1. Total rapid eye movement (REM) sleep (A), total non-rapid eye movement (NREM) sleep (B) and total sleep (C; 

REM + NREM) plotted in four hour blocks after exposure to a context made fearful by shock training and for time matched 

baseline recordings in DBA/2J mice. For comparison, total REM (D), total NREM (E) and total sleep (F) after exposure to a 

context not made fearful by shock training (NS Context).  In each instance, the mice had experienced either four days of 

shock training (n=11; 20 shocks, 0.2 mA at 0.5 sec duration, 1 min interstimulus interval) or four days of exposure to the 

same context without receiving shock (n=11) prior to testing. Exposure to the fearful context resulted in significant 

reductions in REM sleep and a reduction in total sleep in the dark period. In contrast, exposure to the NS Context resulted in 

significant increases in NREM and total sleep during the dark period. *, p <.05; **, p <.01; ***, p<.001. Dark bar on the 

horizontal axis indicates the dark period. 

Proc. of SPIE Vol. 8548  85482V-5



Brainstem

(LC, DRN,

SubC, LDT,

PPT, PAG,

RPO)

established role in conditioned fear, and probably anxiety [79] and it is important in the forebrain regulation of the stress 

response. The central nucleus of the amygdala (CNA) plays a role in the modulation of autonomic phenomena including 

heart rate, blood pressure and respiratory activity patterning [90-93], particularly as related to stress [93].
 
Further, the 

amygdala is the recipient of sensory information of all modalities from cortical and subcortical structures; and, in turn, it 

projects to diverse neural structures including thalamic, hypothalamic and brainstem target regions important for the 

regulation of fear, arousal and sleep (see Figure 2, adapted from various sources, e.g., [94-97]). Also, the amygdala 

appears to be necessary for both explicit, cue-specific fear conditioning and contextual fear conditioning [77, 98]. 
 

The amygdala plays a role in regulating the stress response. The bed nucleus of the stria terminalis (BNST) is an 

important relay for the influence of the amygdala on the hypothalamic paraventricular nucleus (PVN) [99], the final 

common pathway for information influencing the HPA axis [1, 100, 101]. GABAergic neurons in BNST can directly 

inhibit PVN and reduce ACTH secretion [100]. By comparison, the CNA has minimal direct projections to PVN [102] 

and lesions of CNA do not directly influence PVN activation [103]. However, CNA can influence PVN via trans-

synaptic pathways through
 
the dorsomedial hypothalamic and BNST [102].  

 

 

 

The first suggestion that the amygdala might be involved in the actual regulation of sleep occurred in the early sixties 

[104]. Throughout the years since, studies by sleep researchers have reported on the effects of electrically stimulating the 

amygdala on EEG [105], ponto-geniculo-occipital (PGO) waves [105], and REM sleep [106] and several studies have 

examined the influence of the amygdala on autonomic variables during wakefulness and sleep (e.g., [91, 107-109]). 

Studies in narcoleptic dogs have also implicated the amygdala in cataplexy [110, 111]. In addition, a finding of increased 

cerebral blood flow in the amygdala during REM in humans [112] was interpreted as a possible link between 

emotionality controlled by the limbic system and dream content.  

 

Research over the last several years has demonstrated that indeed the amygdala is a significant modulator of sleep. The 

majority of studies on the role of the amygdala in regulating sleep has focused on its influence on REM sleep (e.g., [113-

117]) and REM sleep related phenomena such as PGO waves, which are one of the key signs of REM sleep [105, 114, 

118]. However, a number of studies also indicate that the amygdala can influence NREM sleep [114, 116, 117, 119] as 

well as arousal [114, 120, 121]. The influence of the amygdala on sleep and arousal most likely involves projections to 

thalamic, hypothalamic and brainstem target regions [94]. These include direct projections via the CNA (e.g., [122-126]) 

and the lateral division of the BNST (reviewed in [94, 95]), the sources of the major descending outputs of the amygdala, 

 

Figure 2. Simplified diagram of amygdala circuitry regulating fear-conditioned behavior and fear-conditioned changes in 

sleep. The lateral nucleus (LA) of the amygdala receives afferent sensory input during fear conditioning. The LA 

projects, via the intercalated cell masses (ITC), to the central nucleus (CNA), which has outputs to brainstem regions that 

control the expression of the fear, arousal and REM sleep. Projections from the hippocampus (Hipp) to the basolateral 

nucleus of the amygdala  (BLA) process contextual information during conditioning and BLA regulates fear expression 

and the influence of contextual fear memory on sleep via projections to CNA and bed nucleus of the stria terminalis 

(BNST) which has similar descending outputs to those of CNA. LC: locus coeruleus; DRN: dorsal raphe nucleus; SubC: 

n. subcoeruleus; LDT: laterodorsal tegmental nucleus; PPT: pedunculopontine tegmental nucleus; PAG: periaqueductal 

grey; RPO: reticularis pontis oralis. Dashed line indicates a direct connection of LA to CNA in some models of fear. The 

ventromedial prefrontal cortex supplies inhibitory input to the amygdala during extinction (not shown). 
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to brainstem regions that regulate REM sleep. A role for CNA in regulating sleep has been well established whereas the 

BNST has been minimally investigated. 

 

Inhibition of CNA suppresses REM sleep whereas its activation (e.g., with electrical stimulation [106]) can promote 

REM sleep in some situations. For example, functional inactivation of CNA with microinjections of the GABAA agonist, 

muscimol, produces a relatively selective decrease in REM sleep whereas blocking GABAergic inhibition with the 

GABAA antagonist, bicuculline, enhances REM sleep [113]. Functional lesions of the CNA by TTX, which inactivates 

both cell bodies and fibers of passage also decrease REM sleep and reduce arousal [121]. The decrease in REM sleep 

can occur without recovery [121], a finding seen with training with inescapable shock and fearful cues and contexts.  

 

Stress-induced inactivation of CNA appears to regulate decreases in REM sleep produced by training with inescapable 

shock and by presentation of shock associated cues and contexts. This is suggested by the lack of Fos activation, a 

marker of neural activation, in CNA after conditioned fear [127] and by findings that bicuculline microinjected into 

CNA attenuate footshock-induced reductions in REM sleep whereas inactivation of CNA with muscimol do not [128]. 

That activation of CNA promotes and that inactivation of CNA reduces REM sleep appear at odds with the prevailing 

conventional view that CNA activation is responsible for regulating fear responses via projections to the periaqueductal 

gray and other brainstem and (Reviewed in [129]). In fact, CNA neurons do fire in response to footshock stress [130] 

and in response to conditioned stimuli [129]. However, CNA is inhibited by stimulation of the basolateral (BLA) and 

lateral nuclei of the amygdala [130] both of which show high Fos expression after footshock [127]. Thus, it is possible 

that CNA activation during fearful/stressful events does regulate fear behavior in wakefulness, but subsequently, with 

certain stressors, can be inhibited to decrease REM sleep in the post-stress period. 

 

Other than the CNA, the BLA has received the most attention with respect to a potential role in regulating sleep. In rats, 

bilateral electrolytic and chemical lesions of BLA have been reported to increase NREM sleep and total sleep time in 

rats [117] whereas electrical and chemical stimulation of BLA increase low voltage, high frequency activity in the 

cortical EEG and decrease NREM sleep and total sleep time [117, 131]. Bilateral chemical lesions of the amygdala in 

Rhesus monkeys produce more consolidated sleep during chair restraint [132], a finding consistent with activation of 

BLA by stress and a role for BLA in the regulation of sleep and arousal. BLA may also selectively influence REM sleep. 

Microinjections into BLA of the Group II metabotropic glutamate (mGlu) receptor agonist, LY379268, selectively 

reduced REM sleep without significantly altering wakefulness or NREM sleep [133].  

 

The central CRH system plays a major role in mediating responses to stressors [134, 135]. Administration of CRH in 

animals produces many of the signs associated with anxiety in humans, including increased wakefulness [136-138], 

altered locomotor activity, and an exaggerated startle response [139, 140]. By comparison, CRH antagonists attenuate 

behavioral responses to stress (e.g., [141-143]). CRH also plays an important, but poorly understood, role in regulating 

spontaneous and stress-induced alterations in sleep (e.g., [36, 137, 144-147]).  

 

The amygdala (including extended amygdala) is a critical region for the central effects of CRH, and it appears to mediate 

a number of the anxiogenic effects of CRH as evidenced by intra-amygdala microinjections of CRH agonists and 

antagonists (Reviewed in [95]). For example, local application of CRH or urocortin [148] into the BLA in rats produces 

dose-dependent increases in anxiety behaviors. CRH in the amygdala also plays a significant role in regulating stress-

induced alterations in sleep. In rats, bilateral microinjections of the CRH receptor 1 antagonist, antalarmin, into CNA 

block reductions in REM sleep normally produced by contextual fear and attenuate Fos expression in regions important 

in stress and REM sleep regulation including the PVN, LC, and DRN [149]. Similarly, bilateral microinjections of 

antalarmin into BLA in rats do not alter spontaneous sleep, but do block the reduction in REM sleep produced by 

inescapable footshock [150]. Further, microinjecting antalarmin into BLA prior to shock training also blocked the 

subsequent effects of contextual fear on REM, but did not block fear memory or behavior as indicated by freezing. Thus, 

CRH can act within CNA and BLA to affect stress- and fear-induced alterations in REM sleep. CRH may also act within 

BLA to modulate the formation of memories that can subsequently influence sleep.  

 

7. CONCLUSION 
  

Stress and stress-related memories can have a significant impact on sleep. Fear conditioning has significant promise for 

modeling the effects of stressful memories on sleep. The amygdala has demonstrated roles in regulating physiological 
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responses to stressors, adaptive behaviors, and arousal and sleep. There is evidence that it influences pontine regions 

involved with regulating and generating REM sleep. It also plays significant roles in mediating the effects of stress and 

stressful memories on sleep and arousal and altered amygdalar functioning is implicated in pathological states. These 

factors indicate that the amygdala is a critical neurobiological link between stress, fear conditioning and sleep.  
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