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ABSTRACT 

In this work, a two-dimensional analytical model of a multi-position radar system with ambiguous range measurements 

is elaborated and tested. In the proposed analytical model, properties of ambiguous measurements of fractional parts of 

relative unambiguity intervals in each radar are determined. Theorems are formulated defining the conditions of the 

unambiguous mapping of a target’s coordinates onto the aforementioned fractional parts, as well as a reverse 

unambiguous mapping of those fractional parts onto a two-dimensional vector of integers. The vector contains ranges 

from the target to pairs of radars composing the considered system. The theorems are based on a principle of mapping 

the measurements of fractional parts onto a multidimensional unit cube, and the interpretation of the total set of 

measurements as a multilayer structure of this cube. Moreover, each layer is a multidimensional hypersurface bounded 

by the cube faces, and the unambiguity conditions are reduced to the conditions that these layers do not intersect with 

each other. Based on the developed model and the formulated theorems, an algorithm is proposed for disclosing the 

ambiguities of the fractional parts mentioned, as well as for obtaining unambiguous estimates of the target coordinates. 

An example of a multi-position radar system and results of modeling chosen elements of the algorithm for disclosing 

ambiguities are also presented. The aims of further research are formulated, particularly regarding the synthesis of multi-

position radar systems and the elaboration of an analytical model for systems for the localization of emission sources of 

periodic radio signals. 
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1. INTRODUCTION 

Trends in modern radioelectronic system (RES) development have resulted in increasingly complex and often 

contradictory requirements for these systems. Concerning radar systems, such a contradiction consists of the expectation 

of extended range and improved effectiveness while at the same moment ensuring noise immunity and stealth operation. 

Such expectations, as a rule, cause an inconsistency in the requirements with respect to the desired parameters of the 

emitted radio signals and achievable ranges of the RES. There are well-known approaches to partially solve the problems 

stated above. They consist of using radio signals with complex types of modulation [1-6], or combining single 

measurements from different radars [1], [7-8] in order to obtain a desired effect in a multi-position radar system (MPRS). 

In this paper, an approach to solve the above contradiction is proposed. It involves using modular code binary sequences 

(CBSs) in radars with structures optimized by the criteria of secrecy and noise immunity [1], [4-6], but with ambiguous 

estimation of the radar-target distance. Additionally, the approach involves the joint processing of ambiguous 

measurements of each of the radars, and on this basis, getting unambiguous estimates of the target coordinates. The 

implementation of the proposed approach is based on the construction of a two-dimensional MPRS analytical model, 

using a method of nonlinear conjugation of ambiguous scales and an algorithm of ambiguity disclosure. 
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2. PROBLEM FORMULATION 

It is assumed that each radar operates in an active mode, emitting a continuous radio signal modulated by the optimal 

CBS. In general, modulators of the CBS are paired differently and are quasi-orthogonal for each pair of radars. Thus, all 

radars emit radio signals with quasi-orthogonal modulations, which ensures their effective identification when receiving 

and processing reflected radio targets. The duration of one cycle of a modulated radio signal (repetition period iT  of the 

modulating CBS in the radio signal of the i-th radar) should not exceed the value minR c , where minR  represents the 

minimum distance to the target; c is the free-space electromagnetic wave velocity. 

The interval (scaled in distance units) of a single distance measurement of the radar is determined by the ratio i id T c=  . 

The time of the radio signal passing from the radar to the target and back is T 2pass iR c= , where iR  is the distance, and 

( )passT 2i i iR d c d=  is the relative distance from the i-th radar to the target. The receiver of the i-th radar estimates the 

fractional part of the relative distance i iR d . The corresponding ratios can be written as follows: 

     2i i i i pass iR d R d T T
+ +
+ = , (1) 

where  
+
 is a floor function of i iR d  and 

+
 means a fractional part function of i iR d ; 

 i i iR d K
+
=  - unknown number of entire relative periods in the distance i iR d ; 

 i i iR d
+
=   - fractional part of the relative period at the distance i iR d  for  1,  2, ,  i n . 

From (1) the following relations between the relative distance, period iT  and time interval it  follow, which define the 

fractional part i : 

 ( )   
+ +

pass i i i iT 2T = Δt T =f ,       2 2i i i i i iR d T T t
+ +
 =   =  . (2) 

Thus, the time interval it , which can be estimated in the i-th radar using the reflected radio signal, is determined by 

relation (2). In order to further formulate the MPRS model, we will need to establish an analytic formula that expresses 

the value of i  by means of  2 i iT
+

  . From expression (2), we can write the following congruence: 

  2 i i it T
+

 =  ;   0iT  ,   0 i it T   ,   0 1i   . (3) 

Formula (3) has the following solution: 

 ( )1 2i i it T =  ; ( )2 2 0.5i i it T =  + . (4) 

The plot of i  vs i it T  is shown in Fig. 1. 

 

Figure 1. Dependence of i  value on i it T  
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Equation (4) and Fig. 1 imply that i it T  is mapped onto i  ambiguously. 

The schematic representation shown in Fig. 2 is used to form an analytical two-dimensional model of the MPRS. 

 

 

Figure 2. Two-dimensional representation of MPRS 

 

From the above, it follows that a separate i-th radar can estimate a fractional part of i  but cannot determine the whole 

value Ki. Thus, the problem can be solved by developing a deterministic analytical model of the MPRS and determining 

the conditions for unambiguous mapping of coordinates x0, y0 onto multiple values i . In addition, it is necessary to 

determine the conditions for the unambiguous map of values i  in Ki for two selected radars to elaborate an algorithm 

for the disclosure of an ambiguity. Note that the term “deterministic model” used here means that the values i  are not 

random. 

To solve this problem, the approach developed in [9-11] concerning the methods of revealing ambiguity in the linear 

conjugation of scales was developed. 

3. ANALYTICAL MODEL OF A MULTI-POSITION RADAR SYSTEM 

From the above considerations, a deterministic analytical model of the radar can be represented in the form of a system 

of nonlinear congruences: 

 ( ) ( ) 2 2

0 0i i i ix x y y d
+

− + − =  , (5) 

where x0, y0 - target coordinates; xi, yi - coordinates of the i-th radar. It allows the two following statements to be 

formulated: 

Statement 1: a necessary and sufficient condition for unambiguity mapping ( )0 0, ix y →  in the system of nonlinear 

congruences (5) has the form of inequality: ( ) ( )
2 2

0 0 0i i ix x y y d− + −  . 

For two arbitrarily selected i-th and j-th radars, a system of equations can be obtained from (5) by elementary 

transformations: 

 ( ) ( )
2 2

0 0 0i i i i ix x y y K d R− + − = +  ,      ( ) ( )
2 2

0 0 0j j j j jx x y y K d R− + − = +  , (6) 

where 0i i iR d =  , 
0 j j jR d =  . 
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In general, from (5) we can write n independent equations similar in form to (6). The values Ki and Kj are unknown 

integer parameters, x0, y0 are unknown coordinates of the target, and 0 0,i jR R   are known values. Therefore, it is 

necessary to express x0, y0 from (6) by i iK d , 
j jK d  and 0 0,i jR R  . Next, substitute x0, y0 to the rest of 2n−  

equations that are formed from (5) and obtain 2n−  equations that contain n unknown integer values mK  for 

 1, , , ,m n m i j  . An essential feature of the obtained integer equations is that the integer parameters mK  enter 

linearly into equations with indices m. Next, for the resulting system of 2n−  equations with n unknown integer 

variables mK , conditions under which this system has a single solution are formulated. 

Therefore, based on this consideration, when carrying out the equivalent transformations of the system (6), the following 

expressions for 0 0,i ix y  can be obtained: 

 ( ) ( )2 2 2 2 2 2 2 2 2 2 4 4 4 2

0 0.5 0.5 2i ij i j ji ji ij i j i ji j ji i j ji jix x A A R R y A A A R A R A A R R=  − −   + + − − −  (7) 

 ( ) ( )2 2 2 2 2 2 2 2 2 2 4 4 4 2

0 0.5 0.5 2i ij i j ji ji ij i j i ji j ji i j ji jiy y A A R R x A A A R A R A A R R=  − −  + + − − −  (8) 

where 0i i i iA K d R=  +  ; 
0j j j jA K d R=  + ; 

ij i jx x x= − ;   
ij i jy y y= − ; 

2 2 2

ij ij ijR x y= + ; 0 0i ix x x= − ;  0 0i iy y y= − . 

Substituting (7) and (8) into (6) with index ,m i j  and carrying out a series of transformations gives the following 

equation with three unknown integers , ,i j mK K K : 

 

( )( )

( ) ( )

( ) ( )

2 2 2 2

2 2 2 2 2 2 4 4 4 2

2 2 2

0 0

2

ij im ij im i j ji ji

ij im ij im i j i ji j ji i j ji ji

m m m i i i im

x x y y A A R R

y x x y A A A R A R A A R R

K d R K d R R

+ − − 

 − +  +  − − − =

=  +  −  +  −

 (9) 

The practical significance has the variant of MPRS radar placement on a straight line which is taken as the x-axis of the 

coordinate system (Fig. 2). In this case, the values 
ijy  for  ,  1, ,i j i n   are equal zeroes 0ijy = , and (9) can be 

written after a series of transformations in the following form: 

 ( ) ( ) ( )
2 2 22 2 2 2 ; ;  ,j j j mi i i i mj m ji mi mj m m mK d x K d x d x x x d K i j m i j +   − +  +  = +  

  
 (10) 

The equation (10) with integer variables , ,i j mK K K  for i j  and ,m i j  provides the ability to write down the system 

of 2n−  nonlinear congruences, each containing only two integer variables Ki and Kj: 

 ( ) ( )
2 22 2 2 2

j j j mi i i i mj m ji mi mj m nK d x K d x d x x x d

+

  +   − +   + =     
. (11) 

The system of congruences (11) gives the following mapping: for each fixed pair of values ,i jK K  selected from the set 

of integers, the set of left-hand sides of the congruence system (11) defines ( ) ( ) 1 2, , , , , ,i j m m  →      for i j  

and ,m i j . This map is continuous and sets the 2n−  dimensional surface in a single cube, and provides a tool for 

forming multiple values ,i jK K  within which unambiguous mapping ( ) ( ) ( )0 0 1 2, , , , ,n i jx y K K      is ensured. 

Statement 2: a necessary and sufficient condition for mutual unambiguous mapping in the form 

( ) ( ) ( )0 0 1 2, , , , ,n i jx y K K      requires that there is no congruence solution: 

 ( ) ( ) ( ) ( ) 
2

2 2 2 2 2 2 2 2 2 22 2 0mi jp jq j mi jp jq j mi ir il i mj ir il ix K K x K K d x K K x K K d   − −  − − − −  − =
   

 (12) 
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where  ), 0 1i j    , ,jp jq jK K  , ,ir il iK K   and ,i j  are sets of ,i jK K  values within the range of 

unambiguity. 

The system of congruences (11) gives a practical algorithm for obtaining estimates of ,i jK K values and calculating the 

coordinates by the equations (7) and (8). 

The sequence of the algorithm steps is as follows: 

1. The known input values in (11) are , ,i j m   , ,i jd d , , ,ji mi mjx x x  and 
ij  set of values ( ),i jK K . 

2. Calculate the value of the left-hand sides of (11), substituting in turn their values ( ),i jK K  from the set of 

i j  . For each ( ),i jK K  can be received 2n−  values of the left parts, and there will be ( )2M n −  of them 

in total, where M is the number of elements of the set 
i j  . 

3. Evaluation ( ),i jK K , which determines the coordinates ( )0 0,x y  is obtained by the following criterion: 

 
 

,
, ; 1;2; ,

min
i j i j

ijm m
K K

m i j m n
 

 

 −  . (13) 

where 
ijm  represents the left-hand sides of (11). 

4. NUMERICAL EXAMPLE 

A quantitative example for a two-dimensional radar system is shown below. 

( ) ( )0 0, 7; 23x y = , 1 1R d 3.4345185= , 2 2R d 4.07074408=  

( ) ( )1 1, 0; 0x y = , ( ) ( )2 2, 2;0x y = , ( ) ( )3 3, 5;0x y =  

1 7.0d = , 2 5.0d = , 3 3.0d =  

1 0.4345185 = , 2 0.7074408 = , 3 0.6955973 = . 

A set of permissible values of ( ),i jK K  is shown in Table 1. 

Table 1. The set of permissible pairs ( )1 2,K K  

K1 

K2 0 1 2 3 4 5 6 7 8 

0 + + + + + + + + + 

1  + + + + + + + + 

2   + + + + + + + 

3    + + + + + + 

4      + + + + 

5       + + + 

6        + + 

 

The results of the calculations according to criterion (13) are shown in Table 2. 
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Table 2. Results of ( )1 2,K K  calculations using criterion (13) 

K1 

K2 0 1 2 3 4 5 6 7 8 

0 0.5786 0.0858 0.4909 0.1254 0.2503 0.6222 0.079 0.3600 0.2717 

1  0.1395 0.0670 0.2135 0.5160 0.1592 0.1778 0.5221 0.1288 

2   0.0543 0.0433 0.0852 0.3038 0.5687 0.1390 0.1697 

3    0.2238 0.0063 0.0366 0.1796 0.3856 0.6307 

4      0.0845 0.0352 0.1121 0.2636 

5       0.1798 0.0659 0.0852 

6        0.2864 0.1189 

 

The calculations performed according to the developed algorithm restore the values ( ),i jK K , which unambiguously, by 

the formulae (7) and (8), provide the determination of coordinates ( )0 0,x y . 

5. CONCLUSIONS 

The paper presented a two-dimensional analytical model of a multi-position radar system with ambiguous measurements 

of distances from each of the radars of the system, a method of the nonlinear conjugation of radar measuring scales, and 

an algorithm for revealing the ambiguity of measurements of a set of radar scales. The developed algorithm provides an 

effective ambiguity disclosure since the dimension of the recoverable two-dimensional parameter does not depend on the 

number of radars in the system. An example of a two-dimensional multi-position radar system and the results of a 

numerical simulation of the ambiguity detection algorithm elements were given. 

From the studies and the results obtained in this work, the following directions of designing multi-position radar systems 

can be formulated: 

₋ further development of an analytical MPRS model for the three-dimensional case with consideration of the 

stochastic nature of m  in (5), 

- development of an analytical model and an effective method of detecting ambiguity in passive systems for 

determining the coordinates of radiation sources of periodic radio signals, 

- synthesis of MPRS scales with the active radar mode, 

- synthesis of scales of passive systems for determining coordinates of periodic signals of radiation sources. 

The obtained results provide a good basis for enabling the implementation of multi-position radar systems. 
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