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ABSTRACT

Successful image reconstruction in computed tomography (CT) relies on the completeness of the projections.
If the patient does not fit in the field of measurement, the projections are truncated causing cupping artifacts
in the image and a diminished field of view (FOV). In order to restore the CT values and extend the FOV,
the projections have to be completed, for example via an extrapolation. The discrete algebraic reconstruction
technique (DART) has shown its efficacy in reconstructing discrete images from insufficient raw data. In this
work, we use DART images as a prior for projection completion of clinical CT scans. We compare our method to
the conventional adaptive detruncation (ADT) and evaluate the RMSE inside and outside the FOV along with
the Dice score.
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1. INTRODUCTION

Image reconstruction in computed tomography (CT) depends heavily on the quality of the available raw data.
However, in many instances the acquisition parameters lead to raw data that are insufficient for a conventional
method such as filtered back-projection (FBP). Typical problems are a low number of projections, small angular
range, or low tube current. This work focuses on the issue of truncated projections, i.e. the case where the
patient does not fully fit in the maximum field of view (FOV) of the scanner. In clinical practice, truncation
most often occurs with obese patients, patients that are not centered properly on the table, or when using C-arm
systems, which generally feature small FOVs.

Sinogram truncation is twofold problematic. On the one hand, voxels inside of the FOV suffer from cupping
artifacts. On the other hand, there is a demand of artificially extending the FOV. Voxels in the extended FOV
(eFOV) are of interest for several algorithms, including metal artifact reduction and beam hardening correction
in CT, and attenuation and scatter correction in PET.1,2

In order to reduce artifacts within the FOV, several data extrapolation methods have been developed.3–5

These conventional algorithms are able to restore the CT values within the FOV to acceptable values, such
that the cupping artifacts are removed. However, voxels in the eFOV are typically not reconstructed accurately.
Recently, there have also been deep learning methods developed for the purpose of extending the FOV, showing
promising results.6,7

Another method that has shown promise for reconstructing truncated raw data is the discrete algebraic
reconstruction technique (DART).8–10 DART is a well-known algorithm for reconstructing discrete CT volumes,
e.g. in the context of non-destructive testing of homogeneous objects. It was specifically developed for scans
with few projections or limited angular range.11–13 Utilizing the assumption that the object consists of very few
attenuation coefficients, DART is capable of image reconstruction with severely limited data.
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Table 1. RMSE and Dice values for both patients and levels of truncation. RMSE is given for the original and for the
extended FOV.

Truncated Cosine Detruncation ADT DART Our Method
Mt = 678Mt = 372Mt = 678 Mt = 372 M=678Mt = 372Mt = 678Mt = 372Mt = 678Mt = 372

Patient 1
RMSEFOV [HU] 82.01 1005.6 28.38 92.56 15.64 38.53 124.25 141.07 9.67 35.57
RMSEeFOV [HU] 145.31 788.32 72.75 275.07 42.20 152.89 108.16 163.23 28.34 134.26

Dice 0.977 0.65 0.991 0.859 0.996 0.968 0.996 0.973 0.999 0.975

Patient 2
RMSEFOV [HU] 97.29 912.14 27.94 114.15 14.83 26.79 150.42 178.30 12.72 45.92
RMSEeFOV [HU] 162.53 699.16 73.03 294.24 42.77 127.81 132.38 194.03 34.47 161.48

Dice 0.9703 0.673 0.988 0.835 0.996 0.965 0.993 0.960 0.999 0.963

In this work, we apply DART to clinical CT data to obtain a prior image for detruncation, i.e. to fill the
missing projections. Although clinical CT volumes are not strictly homogeneous, a typical CT scan consists
only of soft tissue, bone, and air. In addition, for the purposes of the projection completion, the patient is often
approximated by a single attenuation value.3–5 Although DART was developed for discrete CT, it internally
computes real valued images, which we use for detruncation. To evaluate our method, it is compared to the
established adaptive detruncation (ADT).4

2. METHODS

We define the detruncation problem as follows. We have access to truncated parallel beam raw data pt(ϑ, ξ)
with Mt pixels of size ∆ξ. Let ξt,max = 1

2 (Mt − 1)∆ξ, such that the detector range is −ξt,max ≤ ξ ≤ ξt,max.
In order to reconstruct an artifact free image, the full detector should have Mf > Mt pixels, corresponding to
ξf,max = 1

2 (Mf − 1)∆ξ. Thus, the required extrapolation includes pixels within ξt,max < |ξ| ≤ ξf,max. In image
domain, this expands the original FOV with radius RM,t = ξt,max to the eFOV with radius RM,f = ξf,max. Due
to the limitations of the scanner, the eFOV cannot be larger than the bore size. Figure 1 shows our strategy to
fill the missing projections: First, generate a prior image using the DART algorithm. Second, forward-project
the prior image and fill in the missing data in the original sinogram using the prior sinogram.

2.1 Generating a DART Prior Image

DART employs a combination of discretization and real-valued algebraic reconstruction.11,12 Figure 1 shows
the basic DART scheme on the left. During each DART iteration, only a subset of pixels is changed, while the
rest of the pixels are set to constant values. In order to determine the fixed pixels, we first segment the current
image estimate into air and tissue by thresholding at −500 HU. Then, every pixel that is fully surrounded by
pixels of the same class is fixed and set to a value of −1000 HU or 100 HU for air or tissue, respectively. Each
pixel is given an additional probability of 65% to be classified as non-fixed, so that values inside homogeneous
patches can be corrected. Subsequently, we perform five SART iterations where only the non-fixed pixels are
considered.14 One SART iteration is defined as

fnew = f + λ
1

XT 1
XT

(
p−Xf

X1

)
, (1)

where f is the current image estimate, fnew is the new estimate, p are the raw data, λ is a relaxation factor, X
is the forward-projection and XT is the back-projection.

Since the fixed pixels contain no noise, all projection noise will be distributed over the non-fixed pixels.
Therefore, the last step is a smoothing with a Gaussian filter with a standard deviation of 0.5 pixels. This
finishes one iteration and the algorithm continues with the segmentation step. Since there is no formal stopping
criterion, we set the maximum number of iterations Niter to 5000. In most cases, a few hundred iterations were
sufficient. To initialize the DART algorithm, we perform a simple cosine detruncation followed by an FBP. Note
that only the original raw data are used for the DART iterations.

In conventional applications, the DART result will again be segmented at the end of the algorithm, as
a discrete volume is desired. In this work, DART is used with clinical data. Therefore, we omit the final
thresholding and instead use the real valued image as the prior image.
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Figure 1. Scheme of the proposed DART detruncation. The dashed box highlights the DART reconstruction, the right
side shows the data completion step.

2.2 Projection Completion

In order to acquire a complete sinogram, the information in the prior image and the original raw data pt have to
be combined. First, forward-project the prior image to obtain the prior sinogram pDART. Then, the detruncated
sinogram pd incorporates the original data pt wherever possible and pDART otherwise. Thus, only the outer
regions are filled with the prior sinogram. However, simply copying the pixel values might cause artifacts at
the edge between original and new data. To amend this, a factor c(ϑ, ξ) scales the new data to match the
original data at the boundary. This factor is calculated separately for each projection and side. Finally, the
DART-detruncated image is reconstructed from pd via FBP.

2.3 CT Data

All data sets were obtained with a SOMATOM Force CT scanner (Siemens Healthineers, Forchheim, Germany).
Images were acquired at 70 kV, and reconstructed on a 512 × 512 matrix with 0.6 mm slice thickness and
0.8 mm× 0.8 mm pixel size.

We generate full and truncated sinograms by monochromatically forward-projecting in parallel beam geom-
etry. The simulations are performed with N = 256 projections with an angular range of 0 to 180◦. The full
sinogram has Mf = 1024 detector pixels with a pixel size of 0.5 mm. We investigate two levels of truncation with
Mt = 682, 372 detector pixels, which correspond to a relative detector size of 2

3 and 1
3 , respectively. Note that

our method can easily be adjusted to other geometries, e.g. fan-beam or cone-beam.

2.4 Analysis

To quantify how well the algorithm can correct CT values inside the original FOV, we calculate the root mean
squared error (RMSE) within the FOV with respect to the image reconstructed from the full detector. The
RMSE for an image f(i, j) with respect to the ground truth image GT is defined as

RMSE =

√√√√ 1

NxNy

∑
0≤i,j≤Nx,Ny

(f(i, j)−GT(i, j)). (2)
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Furthermore, we compute the RMSE within the eFOV and Dice score of the whole image to compare the ability
of the detruncation to restore the CT values and patient outline outside of the original FOV. For the latter, the
images are segmented into air and soft tissue with a threshold of −500 HU. The Dice score is defined as

Dice =
2TP

2TP + FP + FN
, (3)

where TP are the true positives, FP the false positives and FN the false negatives. To compare the DART
detruncation with a conventional method, we also apply the adaptive detruncation (ADT)4 to the data.

3. RESULTS

Figure 2 shows the first patient, including detruncation results from cosine detruncation, ADT, DART, and our
method. In the left column, the scan suffers from light truncation. This causes minor cupping artifacts at the
left and right side of the patient in the uncorrected FBP reconstruction. All methods have have successfully
removed the cupping and restored CT values to voxels in the eFOV. After cosine detruncation, artifacts remain
at the edge of the FOV and the tissue in the eFOV is too dark. In the ADT result, voxels on the right side
are slightly brighter than in the other ground truth. For the case of strong truncation, displayed in the right
column of Figure 2, there is a considerable difference between ADT and our method. While ADT is able to
restore CT values inside the original FOV very well, the tissue outside of the FOV is too bright and the patient
outline does not agree with the ground truth. In contrast, the DART-detruncated image is very close to the
full-view reconstruction, although fat has been converted into water at the bottom of the image and some bone
anatomy is incorrect. These findings are supported by the numerical evaluation in Table 1. In all cases, our
method outperforms ADT in terms of RMSE and Dice score. Notably, the DART prior image has relatively
high RMSE values (above 100 HU in all cases) but good Dice scores, indicating high image noise. Figure 4
shows the projections for the case of strong truncation. Although the ADT is able to estimate the projections
approximately, the DART prior and DART detruncation are noticeably smoother and more accurate.

Figure 3 displays the results of the second patient. Again, both ADT and DART detruncation perform well
when the data are only mildly truncated. As for the first case, the ADT image features slightly too high CT
values on the right side. The DART prior image and DART-detruncated image show a dark streak along the
edge of the FOV. For strong truncation, the ADT again yields CT values that are too high on the left and
right side of the FOV and does not provide a clear patient outline. Still, ADT clearly outperforms the cosine
detruncation. While the DART reconstruction gives more accurate CT values in general, there are gaps in the
soft tissue of the patient. This artifact is also evident in the RMSE of the eFOV and the Dice score, which are
lower than ADT for both the DART and DART-detruncated image. In the case of mild truncation, our method
still yields superior numerical results.

4. DISCUSSION & CONCLUSION

In this work, we propose a method of CT raw data detruncation based on the DART reconstruction. The DART
detruncation was capable of reducing cupping artifacts in the FOV, as well as restoring CT values in the eFOV,
for two levels of truncation. Compared to the conventional ADT, our method produced superior visual and
numerical results. However, for patient 2 with strong truncation, some anatomy was incorrectly reconstructed
as air, yielding worse numerical results than ADT. These artifacts would likely be prevented with a better initial
estimate of the image, along with additional iterations of DART.

This work uses the original DART algorithm11,12 with a single, manually determined threshold. In the future,
a more refined version of DART, e.g. with automatic parameter optimization or improved performance for noisy
projections13,15,16 should be preferred, in order to reduce computation time and image noise.
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Figure 2. Detruncation results for Patient 1. Left column
shows mild truncation (Mt = 682), right column strong
truncation (Mt = 372). Top to bottom: ground truth,
truncated FBP, cosine detruncation, ADT, DART prior
image, DART detruncation. C = 0 HU, W = 1000 HU.

Figure 3. Detruncation results for Patient 2. Left column
shows mild truncation (Mt = 682), right column strong
truncation (Mt = 372). Top to bottom: ground truth,
truncated FBP, cosine detruncation, ADT, DART prior
image, DART detruncation. C = 0 HU, W = 1000 HU.
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Figure 4. Projections for Patient 1 with strong truncation after detruncation. Top to bottom: ground truth, truncated
FBP, cosine detruncation, ADT, DART prior image, DART detruncation.
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