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Abstract. Recent developments in Fourier domain—optical coher-
ence tomography �Fd-OCT� have increased the acquisition speed of
current ophthalmic Fd-OCT instruments sufficiently to allow the ac-
quisition of volumetric data sets of human retinas in a clinical setting.
The large size and three-dimensional �3D� nature of these data sets
require that intelligent data processing, visualization, and analysis
tools are used to take full advantage of the available information.
Therefore, we have combined methods from volume visualization,
and data analysis in support of better visualization and diagnosis of
Fd-OCT retinal volumes. Custom-designed 3D visualization and
analysis software is used to view retinal volumes reconstructed from
registered B-scans. We use a support vector machine �SVM� to per-
form semiautomatic segmentation of retinal layers and structures for
subsequent analysis including a comparison of measured layer thick-
nesses. We have modified the SVM to gracefully handle OCT speckle
noise by treating it as a characteristic of the volumetric data. Our
software has been tested successfully in clinical settings for its efficacy
in assessing 3D retinal structures in healthy as well as diseased cases.
Our tool facilitates diagnosis and treatment monitoring of retinal
diseases. © 2007 Society of Photo-Optical Instrumentation Engineers.
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Introduction
ecent advances in Fd-OCT1–3 make possible in vivo acqui-

ition of ultrahigh-resolution volumetric retinal OCT data in
linical settings. This technology has led to new and powerful
ools that have the potential to revolutionize the monitoring
nd treatment of many retinal and optic nerve diseases similar
o the advancement achieved in other medical areas due to the
pplication of clinical volumetric imaging. However, in order
o fully realize this potential, new tools allowing the visual-
zation and measurement of retinal features are required. At-
empts at visualization of OCT volumetric retina data have
ecently been presented by several groups4–6 and have in-
luded visualizations of highly magnified retinal structures
maged with adaptive optics �AO-OCT� systems.7,8 Possible
pproaches to retinal layer segmentation have also been
resented.9–12

ddress all correspondence to Robert J. Zawadzki. Tel: 916–734–5839; Fax:

16–734–4543; E-mail: rjzawadzki@ucdavis.edu

ournal of Biomedical Optics 041206-
In this paper we present a clinical Fd-OCT system that
produces retinal volumes that are visualized and analyzed in
real time with custom software. A fully automated approach
that segments, classifies, and analyzes retinal layers would be
ideal. However, the morphology of retinal layers varies dra-
matically from patient to patient and depends on the particular
pathogenic changes of the disease in question. This causes
problems for existing automatic retinal layer extraction meth-
ods used in clinical instruments.13 Therefore, to simplify this
task, we have developed a system based on a semiautomatic
segmentation method. A clinician interactively specifies the
location of a retinal layer on a few select slices in order to
create a segmentation of the entire volume. Our method uses
an SVM-based classification system,14,15 which is a machine
learning method used to predict results based on a given set of
inputs. An SVM is tolerant of misclassification by the user
and of physiological variation between patients and diseases
and easily adapts to the varying data properties that constitute
1083-3668/2007/12�4�/041206/8/$25.00 © 2007 SPIE
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retinal layer. Also, our SVM approach gracefully handles
he speckle noise that disturbs all data acquired through OCT
y modeling it as a normal distribution characterized by a
oxel’s local data mean and variance. Once the layers are
egmented, we can extract a thickness map, layer profile, and
-axis intensity projection or measure a volume of this struc-
ure. We compare our semiautomatic segmentations to manu-
lly segmented layers and test its performance for different
etinal and optic nerve diseases.

Materials and Methods
he results presented in this paper have been acquired during

he routine use of our clinical Fd-OCT system. Over the past
wo years, we have used this system to acquire volumetric
cans from more than 200 subjects, with healthy and diseased
etinas or optic nerve heads. More than half of these data sets
ave been used to create volumetric representations of the
maged retinal structures. SVM segmentation has been imple-

ented with 30 normal and diseased retinas to evaluate clas-
ification of different retinal structures. Due to involuntary
ye motion and reduced �or distorted� intensity of some OCT
mages, not all of the 3D scans are appropriate for volumetric
econstruction; the inappropriate scans are related to �espe-
ially among elderly patients� advanced cataract, significant
ye aberrations, long eyelashes, and ptosis. As a standard
ethod of qualifying retinal scans for volumetric reconstruc-

ion and subsequent segmentation, a movie showing all con-
ecutive B-scans acquired in the volume is generated and
iewed by the operator. The C-scan reconstructed from OCT
mages is also used to rate distortions caused by eye motion.
ue to these problems, which are routine in any clinic, we
ave concentrated our efforts on a segmentation method that
olerates noisy data.

.1 Experimental System
he base configuration of the experimental Fd-OCT system
sed for acquiring 3D volumes has been described
reviously.7 For data presented in this paper, a different light
ource has been used: a superluminescent diode with an
55-nm central wavelength and an FWHM of 75 nm. The
pectral bandwidth of this light source allows 4.5-�m axial
esolution in the retina �refractive index, n=1.38�. The high
ower of this light source supports use of a 90/10 fiber cou-
ler, directing 10% of the light toward the eye, resulting in the
ower at the subject’s cornea equal to 700 �W and allowing
0% throughput of the light back-reflected from the eye to the
etector. With our current spectrometer design �200-mm focal
ength of the air-spaced doubled�, the maximum axial range
seen after the Fourier transform� is about 3.6 mm in free
pace, corresponding to approximately 2.7 mm in the eye.
igure 1 shows a schematic of our clinical Fd-OCT system.

Each subject was imaged with several OCT scanning pro-
edures including 3D scanning patterns centered at the fovea
nd ONH. We used two different scanning arrangements for
D scanning patterns including �1� equally spaced 200
-scans, with each based on 500 A-scans, and �2� equally

paced 100 B-scans based on 1000 A-scans. In both cases,
olumes consisted of the same number of A-scans �100,000�,
nd the time required to acquire a volume was 5.5 s for 50-�s

CD exposure time and 11.1 s for 100-�s exposure time.

ournal of Biomedical Optics 041206-
The longer exposure time was mainly used to increase image
intensity and with 100 B-scans based on 1000 A-scans per
frame acquisition mode, at the cost of more motion artifacts.
Commercial Fd-OCT acquisition software from Bioptigen,
Inc. permitted real-time display �at the acquisition speed� of
the imaged retinal structures and saved the last acquired
volume.

2.2 Image Processing
After each imaging session, saved spectral data are processed
in LabVIEW using standard Fd-OCT procedures,3,7,16 includ-
ing spectral shaping, zero padding, and dispersion compensa-
tion. As a result, a set of high-quality OCT B-scans is saved in
tiff format. It is possible to then analyze data and choose
volumes with no eye motion or ones in which eye movement
occurred only at the beginning or toward the end of the 3D
acquisition, provided there was good fixation during the rest
of the time �especially if the structure of clinical relevance
was scanned without distortions�. In these cases, the part of
the image that was affected by eye motion is removed, result-
ing in a reduction in the number of B-scans and overall size of
the reconstructed 3D volume. In addition, as a preprocessing
step before volume visualization, OCT B-scans are registered
using standard registration techniques. Figure 2 shows a
single B-scan and also a cross section of several B-scans
showing the alignment in different cross sections.

To correct for axial and lateral distortions, we used
ImageJ,17 with the Turboreg plug-in developed in the labora-
tory of P. Thévenaz at the Biomedical Imaging Group, Swiss
Federal Institute of Technology Lausanne,18 which computes
rigid body transformations �translation and rotation� to mini-
mize the difference between neighboring frames, as can be
seen in the lower panel of Fig. 2.

2.3 Visualization and Analysis Software
To render the volumetric data, we used a technique similar to
that described by Carbal et al.19 Every time the volume is
rendered, it is sliced into evenly spaced view-aligned planes.
Each slice is rendered through a pixel shader using the voxel’s
data value, a color map, and alpha blending to create a vol-
ume rendering that is equivalent to a ray tracer that uses
evenly spaced samples. This is done efficiently by implement-

Fig. 1 Schematic of the clinical Fd-OCT system at UC Davis. SLD—
superluminescent diode.
ing a highly optimized cube slicing algorithm and applying it

July/August 2007 � Vol. 12�4�2
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o the bounding box of the volume. We also use adaptive slice
pacing to balance performance/functionality and visual
uality.

There has been substantial research on classification and
egmentation of volumetric data. Most of this work focuses
n visualization instead of explicit segmentation. The most
ommon approach used in volume visualization is based on a
ne-dimensional transfer function to map scalar intensity to
olor and opacity. This effectively allows a region to be clas-
ified based solely on scalar intensity, hiding regions occlud-
ng areas of interest while highlighting the remaining areas
ith a chosen color scheme. This approach does not work for
oisy data if it results in a region that cannot be classified
olely by its scalar intensity �since these values occur some-
hat randomly throughout the volume�. This approach is also
ot applicable to volumes that contain volumetric objects of
imilar intensity values that occlude each other. A great deal
f research has attempted to solve these inadequacies. Levoy
t al.20 used gradient magnitude to highlight material bound-
ries in volumetric data to better express structure. Kindlmann
nd Durkin21 proposed the use of a two-dimensional transfer
unction, represented by a scatterplot, of scalar values versus
radient magnitudes. Others have described methods that help

20,22,23

ig. 2 Registration of the OCT frames. Top image shows one OCT
-scan. Middle image shows cross section through 98 unaligned
-scans. Bottom image shows the scans after registration with ImageJ.
user better utilize this 2D transfer function. Iserhardt-

ournal of Biomedical Optics 041206-
Bauer et al.24 combined a 2D transfer with a region growing
method that expands to fill regions of interest. Region grow-
ing methods are typically ideal for large meandering regions.
Multidimensional transfer functions tend to operate better
than lower-dimensional counterparts since the method can use
more information to segment the data. The method of Bordi-
gnon et al.25 demonstrates a multidimensional transfer func-
tion with a user interface based on star coordinates. This is a
technique that maps multidimensional data to a 2D plane so
that a user can interact with it. Pfister et al.26 compared a
variety of transfer function methods including some of those
listed above. Despite these advances, 2D transfer functions
remain inaccessible to the common user, and their effective-
ness is still predicated on noiseless data. When it comes to
discrete and explicit segmentation, medical imaging research
has used artificial neural networks as a means to assist in
these tasks.27,28 However, support vector machines14,15,29 have
demonstrated better results to date than neural networks �at a
larger computational cost� when applied to pattern recognition
including object identification,30 text categorization,31 and
face detection.32 Tzenget al.33 compared the use of neural net-
works and support vector machines when trying to construct
an N-dimensional transfer function that uses additional vari-
ables such as variance and color �if present� in addition to
scalar values and gradient information. The ability of neural
networks and SVMs to handle error �in the form of noise�
makes them useful for noisy volumetric data sets. However,
these methods still seek to classify a volumetric object solely
based on discrete values, not on distributions. Our approach
converts noise into a classifiable characteristic by using a spe-
cialized SVM that operates on distributions rather than scalar
values.

2.3.1 SVM-based segmentation
Two main design decisions customize an SVM to a particular
application. The first is the kernel used to map input �or
world� space to feature space. As a consequence, the SVM
can process problems that are not linearly separable in input
space. In our case we chose a radial basis function kernel:

Kernel�u,v� = e−��u − v�2, �1�

where � is a constant scaling exponential decay and u and v
are two vectors in the feature space.

The second design decision to be made is the dimension-
ality �data characteristics� of our input space. The first �and
most obvious� value we add to the input �or feature� vector is
scalar intensity. It allows for efficient segmentation of regions
having a low standard deviation �noiseless data�. We also in-
clude the spatial location r= �x ,y ,z� of a voxel since we want
to track spatial locality of data distributions, which allows the
SVM to distinguish between features having similar data dis-
tribution characteristics but residing in different locations.

The method described by Tzeng et al.,33 from which ours
is derived, suggests that six neighbor intensity values
I�x±1,y±1,z±1� should be considered at r= �x ,y ,z� to
counter noise. They suggest that if a voxel value has been
perturbed by noise, inclusion of its neighbors will help deter-
mine the “actual value.” We found this approach to dramati-
cally decrease the effectiveness of the SVM and lead to unin-

tuitive results. We modified this approach to instead use the

July/August 2007 � Vol. 12�4�3



m
l
t
t
l
v
o
r
b
n
s
o

w
�
s
l
m

2
T
t
s
a
v
m
s
W
l
B
p
t
n
m
fi
T
t

Zawadzki et al.: Adaptation of a support vector machine algorithm for segmentation…

J

ean intensity of the six neighbors. We also included the
ocal variance �instead of the standard deviation� both to let
he SVM gauge the accuracy of the mean and to characterize
he local distribution. Our variance estimate is accurate as
ong as the set of neighboring voxels used to compute the
ariance belong to the same feature �i.e., are not on the border
f two or more features, which would give an inaccurate rep-
esentation of the variance for a particular layer�. We detect
order regions through a locally approximated gradient mag-
itude calculation. In summary, for a voxel r= �x ,y ,z� with
calar intensity value I�r�, the data characteristics we use for
ur input vector are

I�r� , �2�

x , �3�

y , �4�

z , �5�

�I�r�� =
1

�N� �n�N

I�rn� , �6�

�I�r� =
1

�N� �n�N

�I�rn� − �I�r���2, �7�

�grad I�r�� = �gradxI�r�,gradyI�r�,gradzI�r��

= 	 1

�N� + 1
�grad I�r� + �

n�N

grad I�rn��	 , �8�

here N is a set of neighboring voxels around r and rn :n
N is a voxel in this set. Thus, for each r we store its inten-

ity, location of a local approximation of the mean value �I�, a
ocal approximation of the variance �I, and a local approxi-

ation of the gradient grad I using a local difference operator.

.3.2 User interface and SVM training
he main advantage of using an SVM to perform segmenta-

ion is that it does not need to know what type of region it is
egmenting a priori. Training data are provided at run time by
user through an intuitive interface, which is a part of our

olumetric rendering software, to dynamically create a “seg-
entation function.” Our system allows a user to quickly clas-

ify features by using a small number of specification points.
e perform this specification on B-scans of the volume, simi-

arly to Tzeng et al.33 The user can interactively choose a
-scan from the volume and “paint” on that B-scan to mark
oints as “feature” or “background.” The user is required only
o draw points on the regions of interest and indicate regions
ot of interest. The difficulty of obtaining an accurate seg-
entation is not selecting training points for the SVM, but
nding the smallest set of points that provide the best result.
his turns into an iterative process of selecting points and
esting the result of the SVM segmentation first on the single

ournal of Biomedical Optics 041206-
frame and then on the whole volume. The cost of choosing
excessive numbers of points is an increase in processing time
by the SVM.

2.3.3 Morphological analysis
The classification provided by the SVM is a partition of the
entire volume so we can use it to extract relevant morphologi-
cal data. For example, one can track the change in the volume
of the given structure �e.g., cup of the ONH� that may be
useful for retinal or optic nerve diagnosis. Another potentially
useful metric is the density of a volumetric object and its
standard deviation. Density in an OCT volume represents the
intensity per voxel volume; thus, the amount of backscattered
light that can be used as a metric characterizing the internal
structure of a given retinal layer or structure.

2.3.4 Speed improvements
SVMs have a large computational cost that hinders a user’s
ability to iteratively create segmentation. We have developed
techniques to reduce the computational cost for both SVM
training and classification. Our techniques aim to reduce the
time needed between iterations for creating and testing an
SVM by a clinician. With the first method, the user tests the
segmentation on individual slices �B-scans�. This method usu-
ally requires only a few seconds �even for volumes of 1000
�500�200 resolution�. The user can browse remaining
slices and apply the trained SVM in order to preview the
segmentation. A user can adjust the current SVM by marking
misclassified voxels, retraining the SVM, and continuing.
Once trained, an SVM classifies each voxel independently of
other voxels. Thus, we take advantage of multiprocessor com-
puters by using multithreading in order to significantly de-
crease computation time for the clinician.

Another effective method restricts the SVM to a subvol-
ume of the data. Our application allows a user to specify
axis-aligned clipping planes in order to specify a subregion.
This approach can significantly reduce the number of voxels
to be processed. Time is saved because a user does not have to
train the SVM regarding “background” data existing outside
this subvolume. Additionally, smaller training data reduce the
mapping complexity of the SVM, resulting in both faster
training and classification.

Assuming that objects are relatively large with respect to
voxel size, we have implemented a checkerboard scheme.
Thus, we only process every other voxel by the SVM. Each
unclassified voxel is classified based on its neighbors. If no
clear majority class is implied by the neighbors, we apply the
SVM to that voxel to decide. This reduces classification time
by about 40% and also leads to smoother object boundaries
and fewer “orphaned” voxels, i.e., those that are disconnected
from larger objects and appear to be noise.

3 Results
Our visualization software is regularly used to render retinal
volumes and allows interactive viewing by our clinicians. Due
to the use of hardware acceleration in our rendering software
�we use common features of modern graphic cards that have
been optimized for interactive media applications�, this is
done in real time at high resolution. We tested our SVM seg-

mentation software on a variety of retinal volumes and retinal

July/August 2007 � Vol. 12�4�4
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tructures that have been segmented. SVM training and seg-
entation time varies dramatically depending on the com-

lexity of the segmented layer or the feature, the number of
oxels in the volume, and the accuracy of segmentation. Total
egmentation time for a whole volume performed on a PC
orkstation with two Intel Xeon 3.6-GHz processors and
GB of main memory can be as short as a few minutes for

mall volumes and well-defined features to as long as 2 hours
or large volumes and complex structures. Generally, the more
raining points needed to extract a feature, the more time-
onsuming is the segmentation. Thus, it is important for the
perator to learn how to efficiently train the SVM to reduce
ime needed for segmentation. In order to quantify the accu-
acy of the segmentation, our visualization software has a
uilt-in manual segmentation option, where the operator can
raw the borders of the segmented feature on each B-scan.
his process may be very time-consuming. However, it can be
sed to create a “reference” segmentation that can be directly
ompared to an SVM segmentation for verification purposes.
dditionally, we can extract morphological data that have
nown normal values, such as retinal layer thickness maps or
etinal layer profiles that can be directly used as a diagnostic
ool in ophthalmology. Moreover, we can use our software to
reate z-axis projection intensity maps of extracted layers, al-
owing visualization of specific retinal features.

.1 Visualization and Analysis of Volumetric Data
o illustrate the performance of our clinical Fd-OCT and our
D data visualization and analysis software, we present four
xamples of visualization and analysis of the clinical data.

The first example is data acquired from a 55-year-old pa-
ient with non-exudative age-related macular degeneration
AMD�. Figure 3 shows the patient’s fundus photo used for
egular clinical diagnosis. The top right image shows a recon-
tructed en face image �virtual C-scan� from the OCT volume

ig. 3 Top left: fundus photo from a patient with non-exudative AMD;
op right: same fundus photo with a superimposed C-scan recon-
tructed from the center depth on OCT volume. Arrows indicate the
elative positions of the B-scans shown below.
100 B-scans/1000 A-scans/B-scan acquired with 100-�s/line

ournal of Biomedical Optics 041206-
exposure� superimposed on the fundus picture. This step al-
lows precise registration of the acquired volume and estima-
tion of the distortions caused by the subject’s eye motions
during the experiment.

To demonstrate the performance of our Fd-OCT system,
four B-scans �labeled A–D� are shown in the lower part of
Fig. 3. The location of the diseased structures can be easily
seen in these images. As described above, this data set is used
to create the interactive volumetric visualization using our
software. Figure 4 shows a screen shot of our volume renderer
and segmentation system. Note the points used to define the
SVM segmentation.

Figure 5 shows an example of different 3D visualizations
of this data set. We used a false color intensity based on a
black-red-yellow color lookup table with black representing

Fig. 4 User interface of volume visualization software with SVM train-
ing data �green for structure of interest and red for background� shown
on the B-scan. The result of the frame segmentation based on these
inputs can be seen on the B-scan. The result of the volume segmen-
tation is marked green on the 2D cross sections; extracted volume is
shown in the upper left window panel �color online only�.

Fig. 5 3D visualization of the volumetric data shown in Fig. 4. �a�
whole volume; �b� left part of the volume removed by x-z clipping
plane; �c� left part of the volume removed by y-z clipping plane; �d�
visualization of segmented part of the volume RPE and photoreceptor-

outer segment complex.

July/August 2007 � Vol. 12�4�5
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ow-intensity voxels and yellow representing high-intensity
oxels. Transparency of each voxel is based on its intensity
nd can be interactively set by the operator.

To test the performance of our SVM segmentation algo-
ithm, we used it to segment the retinal pigmented epithelium
RPE� and photoreceptor layers, structures that show the main
hanges associated with disease progression in AMD. The
umpy surface is due to large drusen, a defining feature of
arly stage AMD. A thickness map of these segmented struc-
ures is created from the SVM segmentation. Figure 6 shows
he corresponding thickness maps from the SVM segmenta-
ion and from manual segmentation. As can be seen from the
mages in Fig. 6, the SVM method leads to clear separation of
hese layers, allowing its visualization as well as estimation of
he thickness of the area of interest. The differences between
he SVM and manual segmentations suggest that some refine-

ent of the SVM may be necessary to better segment high
ensity structures.

Figure 7 shows another SVM-based segmentation of the
PE-photoreceptor-outer segment complex from the retinal

oveal region of a 56-year-old patient with early-stage dry
MD. In contrast to the first patient presented, the RPE-
hotoreceptor-complex disruptions are subtle. Figure 7 shows
esults generated with our custom visualization software �in-
luding z-axis intensity projection�.

Our algorithm was able to segment these structures. How-
ver, since the size of these disrupted regions was small and
here was intensity variation across the volume, mainly at the
orners of the image, not all drusen were identified in the
hickness map. When the size of disruption is bigger, as in the
revious example, the SVM segmentation algorithm has been
ble to pick out the features of interest very accurately.

In the next two examples, we tested the SVM segmenta-
ion algorithm in segmenting the RNFL around the ONH.
hinning of RNFL is known to be a good indicator of possible
nset of glaucoma; therefore, being able to accurately seg-
ent and measure its thickness and follow it over time would

e a good diagnosis and monitoring tool in glaucoma man-
gement. Figure 8 shows the segmentation results of the ONH
rom a healthy 30-year-old volunteer with our SVM segmen-
ation software.

We also segmented the same structure in a 48-year-old
laucoma patient with a moderate amount of visual field loss.

ig. 6 Left: false color representation of the thickness map extracted
rom SVM-based segmentation of the RPE and photoreceptor-outer
egment complex. Right: false color representation of the thickness
ap created from manual-based segmentation of the same structure

color online only�.
he results are shown in Fig. 9.

ournal of Biomedical Optics 041206-
Fig. 7 Evaluation of the volumetric data set acquired over foveal re-
gion of a volunteer with early stage dry AMD. Upper left: 3D render-
ing of the data; upper right: screen shot from the user interface of the
SVM-based segmentation software with segmented structure �RPE +
photoreceptors outer segments� highlighted in green; middle left pro-
jected on z-axis intensity of the original volume; bottom left projected
on z-axis intensity of the SVM segmented structure �RPE + photore-
ceptors outer segments�; bottom right: false color thickness map of the
SVM segmented layer �color online only�.
Fig. 8 Evaluation of the volumetric data set acquired over ONH re-
gion of the healthy volunteer. Upper left: 3D rendering of the data;
upper right: screen shot from the user interface of the SVM-based
segmentation software with segmented structure �RNFL� highlighted
in green; middle left projected on z-axis intensity of the original vol-
ume; bottom left projected on z-axis intensity of the SVM-segmented
structure �RNFL�; bottom right: false color thickness map of the RNFL

extracted from the SVM segmentation �color online only�.

July/August 2007 � Vol. 12�4�6
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As can be seen from these last two examples, SVM-based
egmentation was able to successfully differentiate RNFL
rom other retinal structures, allowing visualization of the
NFL thickness map that shows thinning of this layer for the

ubject with glaucoma. It confirms good performance of the
VM-based segmentation for thick and well-defined
tructures.

Conclusion and Discussion
major limitation in segmentation of OCT volumes is that

mage intensity can vary depending on B-scan location and
ue to the shadowing effects caused by blood vessels. These
ffects are visualized in Fig. 10, where blood vessels do not
llow much light to pass through them, which means that data

ig. 9 Evaluation of a volumetric data set acquired over the ONH
egion of a volunteer with moderate glaucoma. Upper left: a 3D ren-
ering of the data; upper right shows a screen shot from the user
nterface of the SVM-based segmentation software with segmented
tructure �RNFL� highlighted in green; middle left projected on z-axis
ntensity of the original volume; bottom left projected on z-axis inten-
ity of the SVM-segmented structure �RNFL�; bottom right; false color
hickness map of the RNFL extracted from the SVM segmentation
color online only�.

ig. 10 OCT B-scan with segmented RPE-photoreceptor layers; red
ircle indicates blood vessels that distort the intensity values around
nd below them, disturbing the SVM segmentation �color online

nly�.
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in regions around and below them are obscured, distorted, or
occluded. Our visual system can cope with this by recogniz-
ing global patterns and extrapolating them into these regions.
But as stated earlier, SVM classification remains a local op-
eration and is unable to “see” global structure. This makes
segmentation in these areas difficult and inaccurate. Recently
Mujat et al.9 have presented a fully automated segmentation
method that can overcome this problem—however, the com-
putational cost is larger, resulting in frame segmentation time
similar to our volume segmentation time. The only way to
cope with these anomalies in the SVM is to specify a large
amount of additional training data. When spending only a
small amount of time generating training data, these inaccu-
racies are pronounced enough to make any morphological
data extracted from these regions useful only as a first ap-
proximation. Filters partially alleviate this problem, but a bet-
ter solution is desirable. We plan to direct our attention to this
problem in the future, using SVM-based segmentation
methods.

It should be noted that when one performs analyses using
morphological data obtained from SVM segmentation, the
quality of a segmentation depends heavily upon the training
data and SVM quality �i.e., how well the SVM can predict
based on the given input data�.

We will refine our method to take into account certain
global information such as, in the case of OCT retinal data,
the number of layers that make up the retina and the fact that
these layers normally do not intersect one another. Using such
known constraints should further improve segmentation
results.
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