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Abstract. With the advance of computer and photonics technology, imaging photoplethysmography [(PPG), iPPG]
can provide comfortable and comprehensive assessment over a wide range of anatomical locations. However,
motion artifact is a major drawback in current iPPG systems, particularly in the context of clinical assessment.
To overcome this issue, a new artifact-reduction method consisting of planar motion compensation and blind
source separation is introduced in this study. The performance of the iPPG system was evaluated through the
measurement of cardiac pulse in the hand from 12 subjects before and after 5 min of cycling exercise. Also, a
12-min continuous recording protocol consisting of repeated exercises was taken from a single volunteer. The
physiological parameters (i.e., heart rate, respiration rate), derived from the images captured by the iPPG system,
exhibit functional characteristics comparable to conventional contact PPG sensors. Continuous recordings from
the iPPG system reveal that heart and respiration rates can be successfully tracked with the artifact reduction
method even in high-intensity physical exercise situations. The outcome from this study thereby leads to a new
avenue for noncontact sensing of vital signs and remote physiological assessment, with clear applications in triage
and sports training. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602852]
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1 Introduction
The peripheral pulse acquired from photoplethysmography
(PPG) can provide information about cardiovascular status, such
as blood oxygen saturation, heart and respiration rates, car-
diac output, and blood pressure.1 PPG, as first described in
the 1930s,2 is an optical technique that noninvasively measures
arterial pulsations in vivo, and its ease of use, low-cost and con-
venience make it an attractive area of research in the biomedi-
cal and clinical community. However successful, conventional
contact PPG (cPPG) is not suitable in situations of skin dam-
age (burn/ulcer/trauma), or when unconstrained movement is
required. For instance, it has been demonstrated that the spring-
loaded clips in conventional cPPG finger probes will affect the
waveform of PPG signals due to the contact force between the
sensor and the measurement site.3 One potential way to over-
come this problem is through the use of imaging PPG (iPPG), a
remote, contactless diagnostic technique that can assess periph-
eral blood perfusion.4–7

At present, numerous epidemiologic studies provide strong
evidence that occupational or recreational exercise not only
maintains fitness but also boosts the immune system and re-
duces mortality from cardiovascular disease.8 There is also ev-
idence that excessive exercise is hazardous and may result in
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morbidity.9 Furthermore, the “dose” of exercise (i.e., intensity,
duration, and frequency of training required to achieve and opti-
mize the beneficial response) has yet to be fully understood.10 A
remote technique could offer reliable assessment of the cardio-
vascular system during and after exercise, and is therefore worth
developing. Recently, Wieringa et al. have introduced a multi-
ple wavelength imaging PPG device that provides a potential
route toward contactless blood oxygen saturation assessment,5

and Verkruysse et al. have reported a remote PPG signal acqui-
sition technique based on a digital camera and using ambient
light illumination.6 Furthermore, we have previously presented
an integrated imaging PPG setup for the detection of tissue op-
tophysiological properties.11 Recent progress in iPPG research
activities has stimulated our interest in the remote assessment
of the cardiovascular system for evaluation of the influence of
exercise.

PPG is susceptible to motion-induced signal corruption, mak-
ing motion artifact removal or attenuation one of the most chal-
lenging issues in iPPG signal processing.7 In recent pioneering
studies, motion artifacts were not carefully dealt with and the
associated PPG setups were usually operated under conditions
that required the subjects to be motionless.4–6, 12 This draw-
back limits the physiological monitoring capabilities of the tech-
nique in real application environments (i.e., hospital, homecare,
and sports performance assessment). In recent years, several
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methods, such as blind source separation,7 Least-mean-square
adaptive filtering,13 independent component analysis (ICA),14

and single-channel ICA (SCICA),15 have been proposed for re-
moval of noise from biomedical signals. The SCICA method,
introduced by James and Lowe15 and James et al.16 has proved
to be a superior solution to other available techniques because
of its ability to decompose a single-channel recording into its
underlying components (physiological or otherwise), using only
the inherent temporal information independently of the compo-
nents’ origin.

In this paper, we present a novel method for remote assess-
ment of cardiovascular status as well as for evaluation of its tol-
erance at different intensities of motion artifact. Quality imaging
PPG signals were remotely captured from the right palm of 12
volunteers after exercises, and the quality of these signals was
also compared to PPG signals simultaneously recorded from
a contact PPG sensor. The motion artifact-reduction technique
presented in this study attempts the remote acquisition of pul-
satile and respiratory variations during exercise, in order to facil-
itate the appraisal of the effects of exercise on the cardiovascular
system.

2 Methods and Materials
Two experiments were performed for this study, the purpose
of which were (i) to assess the viability of the iPPG setup and
(ii) to assess the performance of the motion artifact reduction
technique presented in this study. The recordings for the first
experiment were taken with the subject at rest to minimize mo-
tion, and those of the second experiment were taken with the
subject performing various intensities of exercise. Hence, the
present study employed individual image-processing procedures
for each experiment. Specifically, a spatial averaging approach
was first conducted to generate the reduced frames for experi-
ment 1. Then, a joint time-frequency analysis [time-frequency
representation (TFR)] was employed to trace the physiological
parameters. In experiment 2, a motion artifact-reduction tech-
nique was applied before the spatial averaging step common to
both experiments. After the reduced frames were obtained, a
blind source separation technique (SCICA) was performed on
the iPPG signals to extract the pulsatile and respiratory wave-
forms. The time-varying heart and respiration rate was then
accessed via the TFR.

2.1 Subjects
None of the subjects involved in this study had any known
cardiovascular disease and none were diabetic. The detailed in-
formation of these subjects is summarized in Table 1. Informed
consent was obtained from all subjects in accordance with the
university ethical committee and in compliance with the Dec-
laration of Helsinki. All subjects were asked to refrain from
consuming caffeine or alcohol and were asked not to smoke or
undertake strenuous exercise for the 2 h preceding the study.

2.2 Imaging Photoplethysmography Setup
The iPPG system is schematically presented in Fig. 1. A
monochrome CMOS camera (model EnSens MC1360-63,
Mikrotron GmbH, Unterschleissheim, Germany) with a max-

Table 1 Subject characteristics.

Variable Mean ± S.D.

n, male/female 12 (10/2)

Smokera/nonsmoker 4/8

Age (years) 31.3 ± 12.7

Height (cm) 177 ± 7.3

Weight (kg) 73.8 ± 13.0

BMI (kg/m2) 23.5 ± 3.5

Rest HR (bpm) 68 ± 12.1

SBP (mmHg) 110.7 ± 13.0

DBP (mmHg) 67.6 ± 7.5

BMI indicates body mass index; HR, heart rate; SBP, systolic blood pressure;
and DBP, diastolic blood pressure.
aFour participants are habitual smokers with over six years smoking history.

imum resolution of 1280×1024 pixels, was focused on the palm
of the participant’s right hand (experiment 1) or face (experi-
ment 2) using a standard F-mount lens (model Nikkor 20 mm
f/2.8D, Nikon, Japan). The pixels were encoded in 10-bit gray
scale, allowing the camera to detect the weak pulsations of the
microvascular tissue bed. A custom-built infrared (λ = 870 nm,
�λ = 15 nm) ring-light illumination source (RIS), comprising
100-RCLEDs (model 0603SMD, JMSienna Co., Ltd., Taoyuan,
Taiwan) fitted into a parabolic ring reflector, was mounted
around the lens to collimate and homogenize the illumination
at the target area. The RIS was current-controlled and synchro-
nized with the camera capture cycle.

2.2.1 Experiment 1: Comparison between cPPG
and iPPG before and after exercise

Protocol. The experimental procedures are depicted in
Fig. 2. All measurements were taken in a temperature-controlled
darkroom (27 ± 1◦C) by a trained operator. For this experi-
ment, 12 healthy subjects aged 20–55 years were enrolled from
Loughborough University. On arrival, each subject was required
to sit on an adjustable chair and rest for at least 10 min before

Fig. 1 Experimental setup of the noncontact iPPG system.
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Fig. 2 Schematic of the experimental protocol.

blood pressure measurements were taken from their left arm
using a clinically validated blood pressure monitor (model M6,
Omron, Japan). Each subject was then asked to sit at ease and
rest their right hand, maintaining it as motionless as possible
during the test. A soft black cushion was placed under the hand to
further minimize the motion. The right palm of each subject was
exposed to the infrared RIS, and the distance between camera
lens/RIS and skin was ∼350 mm. A commercial contact pulse
oximetry sensor (model P871RA, Viamed, United Kingdom)
was placed on the index finger of the right hand to measure the
participant’s pulse signal for subsequent validation of remotely
acquired physiological signals. The analog signal outputs from
the contact sensor were digitized using a DISCO4 (Dialog De-
vices, United Kingdom) data acquisition system comprising a
12-bit A/D converter running at a sample frequency of 128
Hz. The images captured from the camera were synchronized
to the physiological signals acquired from the contact sensor
via an additional signal from the camera to the A/D converter
(Fig. 1).

The images were captured for 34 s at a rate of 50 fps
and an exposure time of 15 ms, yielding raw images with
640×480 pixel resolution. Contact PPG signals were captured
from the finger probe for ∼3 min to verify that the heart rate
(HR) was stable. The acquisition of frames was initiated 60 s
later, at which time a synchronization signal triggered simulta-
neous recording of signals from the finger probe. The subject
was then asked to ride a gym cycle (model XR-580, PowerTrek,
United Kingdom) at a speed of 15 km/h (exercise 1) for 5 min.
Immediately after the exercise, the subject’s blood pressure and
second set of images was acquired, again for 34 s. After a 10-min
rest, the subject performed another 5 min of exercise at 25 km/h
(exercise 2) and the postexercise data acquisition procedures
were repeated. A final set of measurements were taken after
another 10-min rest period.

Image processing. Once a set of recordings was successfully
acquired, the raw image frames were divided into discrete sub-
windows to produce a new set of reduced frames, where the
value of each pixel in the reduced frame was set as the average
of all the pixel values within each subwindow. Though com-
promising the spatial resolution, such a procedure was used to
significantly improve the signal-to-noise ratio.6 In the present
study, the subwindow size was set at 10×10 pixels. This resulted
in a reduced frame size of 64×48 pixels, yielding PPG signals at
each pixel position across a sequence of frames. The PPG signals

were then bandpass filtered using a fifth-order Butterworth filter.
Cutoff frequencies were set at [0.5, 4] Hz to allow a wide range
of heart-rate measurements. The joint time-frequency analysis
(e.g., TFR) was then performed on the iPPG signals to assess
the heart rate.

2.2.2 Experiment 2: Motion compensation during
exercise

Protocol. To investigate the continuous pulsatile and respi-
ratory variations under various exercise levels, an additional
video was taken from the face of one male volunteer (age = 27
yr, height = 1.78 m; BMI = 20.5 kg/m2). The face is a conve-
nient target for remote detection because it is uncovered during
the cycling exercise, and it has been shown in the literature that
the facial PPG signal is typically stronger than that from other
anatomical locations.6 A continuous set of data was recorded
while the subject performed four routines, each lasting 3 min.
In the first routine, the subject sat still for recording of baseline
signals; in the second and third routines, the subject performed
cycling exercise at 15 and 25 km/h, respectively; in the fourth
routine, the subject sat still for recording of his recovery from
exercise. For the video recording, the participant was asked to
move naturally with his face pointing directly toward the cam-
era, only taking care to remain seated and to maintain planar
alignment of his face with the camera during the exercise. Im-
ages of 512×512 pixels were taken from the face at a lower
frame rate (20 fps, Texposure = 40 ms) to allow image capture
over an increased duration of exercise (∼12 min). The distance
between the camera lens and the face was 400 mm, and all other
factors were maintained as in experiment 1.

Image processing. An overview of the image processing pro-
cedures for the face recordings is schematically presented in
Fig. 3. Raw frames were submitted to a set of preprocess-
ing algorithms to detect planar shifts within the sequence of
frames and to shift these into alignment. More specifically,
a reference region (50×50 pixels) of high contrast (around
the nose) was manually chosen on the first frame of the set.
The planar shift was determined via 2-D cross-correlation of
the reference region and regions on all subsequent frames.17

Two-dimensional cross-correlation is a basic statistical ap-
proach that measures the degree of similarity between an im-
age and a template.18 The cross-correlation peaks at positions
where the template most closely matches the image; therefore,
it is possible to reveal the shift by computing the correla-
tion over template-sized regions in the image. A fast Fourier
transform–based normalized correlation method was applied
in the present study.19 Alignment of the raw set of frames
resulted in a set of smaller frames (300×400 pixels). These
stabilized frames were then divided into discrete subwindows,
as described earlier, and a new set of reduced frames was
obtained.

Single-channel independent component analysis. Differ-
ing from ICA, which relies on multichannel data, single-channel
independent component analysis (SCICA) is a method to iso-
late multiple components using only the temporal information
inherent in a single-channel recording.16 In essence, SCICA as-
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Fig. 3 Schematic diagram of image preprocessing.

sumes that a set of the observed data points from a single channel
is a linear combination of unknown and statistically independent
sources.15 SCICA can be mathematically expressed as follows:
let x(t) t = 1, 2, . . . , n be the observed single data channel with n
elements. Then break it up into a sequence of contiguous blocks
and treat these as the multichannel observations from which the
following constructed matrix can be obtained:

X =

⎡
⎢⎢⎢⎣

xt xt+τ · · · xt+Nτ

xt+τ xt+2τ · · · xt+(N+1)τ
...

...
. . .

...
xt+(m−1)τ xt+(m)τ · · · xt+(N+m−1)τ

⎤
⎥⎥⎥⎦ , (1)

where τ is the lag term, m is the dimension of the constructed
matrix, and N is the length of the matrix.15, 20 Here, the delay
dimension should be large enough to capture the necessary in-
formation content. According to Ref. 15, the practical minimum
size for m could be determined based on the sample frequency
(fs), lowest frequency of interest (fL), and the lag τ (i.e., m
≥ fs/fL, for τ = 1).15, 16, 20 Hence, given the maximum sample
frequency is 20 and the lowest frequency of interest is 0.2, m
is set to 100 and the lag τ is set to 1 in the present study. On
construction of the delay matrix, ICA is applied to decompose
the delay matrix into a series of independent components (ICs).
Once a subset of ICs (assuming p, p ≤ m) has been chosen, the
resulting embedding matrix Bi in the measurement space can be
calculated as Bi = ai sT

i , where si is the i’th IC (I = 1, 2, . . . , p)
and ai is the corresponding column of the mixing matrix A. The
projected time series bi(t) can then be obtained by averaging the
rows of Bi,

bi (t) = 1

m

m∑
k=1

Bi
k,t+k−1 (T = 1, 2, . . . N ), (2)

Here, Bi
k,t+k−1 is the element of the matrix Bi. In experiment 2,

a separate SCICA was conducted in each state to extract the
respiration and heart rate information from the iPPG signals.

2.3 Photoplethysmography Signal Processing
Fourier transform (FT) offers a passage from the time domain
to the frequency domain and is widely applied in conventional
PPG signal processing because it can straightforwardly provide
fundamental information, such as heart and respiration rates.5, 13

However, it assumes that signals are steady state when physi-
ological signals are transient in nature. Hulsbusch and Blazek
have shown that the uncritical use of the FT could lead to mis-
interpretation of perfusion PPG signals.4 To obtain a potentially
more revealing picture of the temporal localization of a sig-
nal’s spectral components, one must resort to the joint time-
frequency analysis (e.g., TFR). The TFR approach converts a
one-dimensional time signal into a two-dimensional function of
time and frequency so that frequency components can be local-
ized with a good temporal resolution.21 One attempt has recently
been made to reveal the time-varying heart and respiration rates
from imaging PPG via short-time Fourier transform (STFT).6

STFT yields a time-frequency representation of a signal by per-
forming FT along the time axis using an analysis window.21

However, the joint time-frequency resolution of the STFT is
limited [i.e., an increased time resolution (through the use of a
short analysis window) leads to a loss of frequency resolution
and vice versa]. To better characterize properties of the obtained
PPG signals in the joint time-frequency domain, a smoothed
pseudo-Wigner-Ville distribution (SPWVD) (for a review, see
Refs. 21 and 22), was chosen for the TFR estimation,

SPWVD(t, f )

=
∫

h(τ )
∫

g(s − t)x
(

s + τ

2

)
x∗

(
s − τ

2

)
e−2 jπ f τ dsdτ,

(3)

where x(s) and x*(s) are the PPG signal and its complex con-
jugate respectively, g(s) and h(τ ) are two smoothing windows
whose effective lengths independently determine the time and
frequency resolution. On the basis of previous experience in
PPG signal processing, the Kaiser–Bessel function is adopted
as both the time and frequency smoothing window. Originating
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Fig. 4 Effects of exercise on blood pressure and heart rate. Each bar represents the average of 12 subjects for (a) SBP, (b) DBP, and (c) HR for each
state (rest, post-ex1, post-ex2, recovery). Error bars represent standard deviations (S.D.). Significant statistical differences are indicated with * for p
< 0.05 and ** for p < 0 .01.

from the Wigner–Ville distribution (WVD), SPWVD has the
advantage of good time and frequency resolution yet minimizes
the main drawback of WVD (i.e., cross-term interference; mak-
ing it a suitable technique in the present application). In this
work, postprocessing and analysis of both iPPG and physiolog-
ical recordings were performed with custom software in Matlab
2008a (MathWorks, Nantik, Massachusetts).

2.4 Statistical Analysis
Statistical analysis was performed with SPSS15 for MS Win-
dows. Significant difference between the physiological measure-
ments after different conditions was tested with analysis of vari-
ance (ANOVA) to demonstrate the influence of exercise on the
cardiovascular system. Posthoc analysis with Duncan’s test was
also employed to test the group difference. Moreover, to test the
performance of the iPPG system, Bland–Altman analysis23 was
performed for comparison between iPPG and cPPG. The differ-
ence between iPPG and cPPG was plotted against the averages
of both systems, as was the mean and standard deviation (S.D.)
of the differences, the mean of the absolute differences, and 95%
limits of agreements ( ± 1.96 S.D.). In addition, the Pearson’s

correlation coefficients and the corresponding p-values were
calculated to estimate HR from iPPG and contact-PPG system.

3 Results
3.1 Experiment 1
Four physiological measurements were taken as described pre-
viously (i.e., rest, post-ex1, post-ex2, and recovery). Figure 4
summarizes the results of the measured variables: HR, sys-
tolic blood pressure (SBP), and diastolic blood pressure (DBP).
ANOVA showed a significant influence of exercise on SBP and
HR (F = 7.608, p = 0.001 and F = 12.666, p < 0.001). Posthoc
tests revealed that, compared to the rest condition, the HR and
SBP were significantly higher than baseline after both exercise
levels (ex1 versus rest, p < 0.05, ex2 versus rest, p < 0.01).
A significant difference in HR and SBP was also observed
between exercise levels. Higher HR (p = 0.004) and SBP (p
= 0.039) were revealed after exercise 2 (25 km/h) compared
to the moderate exercise level (15 km/h). After a 10-min rest,
the hemodynamic parameters all returned to the rest level. No
significant effect of exercise on DBP was observed.

Figure 5 shows an example of the PPG signals obtained from
a single subject and the TFR, with HR frequency and second

Fig. 5 A representative figure showing (a) a reduced frame (frame 49, t = 1 s) of experiment 1, (b) contact and imaging PPG signals, and (c) the
corresponding TFR results. The upper TFR trace is from the noncontact iPPG, and the lower is from contact PPG with the color bar indicating the
absolute power intensity. The signal is from subject 7 (Male, age = 55 yr) under rest condition. The position from which the iPPG signal was obtained
is highlighted with a black box (1×1 pixels) and an arrow.
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Fig. 6 Bland Altman plots showing the average of the HR measured by the cPPG and iPPG, plotted against the difference between them for each
subject at (a) rest, (b) post-ex1, (c) post-ex2, and (d) recovery states.

harmonic components. The HR derived from the TFR plot was
in excellent agreement with the HR obtained from the commer-
cial pulse oximeter sensor readings. A slowly varying HR is also
detected from the TFR trace, indicating the potential use of TFR
in revealing the time-varying HR during the exercise. To sta-
tistically evaluate the performance of the iPPG system, Bland–
Altman plots were employed to compare the agreement of HR
between iPPG (HRiPPG) and cPPG (HRcPPG) measurements.
The HRiPPG was obtained through averaging the HR within
all the subwindows (64×48 pixels). Historical HR estimations
were used to define a maximum threshold for deviation among
different regions. First, the HR was calculated in the middle of
the processed frames (x = 32, y = 24) and, then, the HR within
this region was treated as a reference. Successive calculations
were then performed where, if the difference between the current
HR estimation and the reference value exceeded the threshold
(9 bpm in this study), the algorithm isolated these regions as
nontissue or corrupt and rejected the invalid HR. The compari-
son of HRcPPG and HRiPPG is shown in Fig. 6. Specifically, the
mean bias is 0.33 bpm with 95% limits of agreement − 1.29 to
1.96 bpm in the rest state, whereas the mean bias obtained after
the first and second exercises are − 0.78 and − 0.55 bpm, re-
spectively. The corresponding 95% limits of agreement are from
− 2.29 to 0.73 bpm and − 2.42 to 1.32 bpm. After a 10-min rest,
the mean bias is 0.24 bpm with 95% confidence interval − 2.40
to 2.88 bpm. Moreover, significant correlation coefficients be-
tween both measurements are revealed in all states (Pearson’s
correlation, r2 > 0.9, p < 0.01).

3.2 Experiment 2
Figure 7 depicts a 12-min iPPG signal [Fig. 7(b)] extracted from
the motion-compensated face images of one male subject who
was asked to perform two sets of cycling exercise, continuously.
The dashed vertical lines indicate different states (i.e., rest, ex1,
ex2, and recovery). The region where the iPPG signal is obtained

is shown as rectangular areas (10×5 pixels) on the forehead
[Fig. 7(a)]. For qualification of the effectiveness of SCICA,
three iPPG signals (duration = 15 s) were selected at random
from data corresponding to the low, medium, and high motion
conditions (i.e., rest, ex1 and ex2 respectively). SCICA was then
used to extract physiological components from these signals.
As can be seen in Fig. 7(c), the physiological information (i.e.,
respiration and heart rate) is clearly exhibited in the iPPG signals
from the motionless rest condition. Both RR and HR are more
clearly visible in the extracted components obtained through
SCICA. Compared to the rest condition, the oscillations of RR
and HR in both ex1 and ex2 states are poorly represented due to
the motion artifacts introduced by strenuous exercise. However,
the two target components can be clearly identified after the
extraction in both exercise conditions [Fig. 7(c)]. The selected
segments in Fig. 7(c) are representative of the SCICA for the
whole data set in each state.

The continuous nature of the extracted respiratory and pul-
satile variation under different exercise conditions is depicted in
Fig. 8. Here, the characteristics of the HR trend are very similar
to the steady postexercise results in experiment 1, thereby sup-
porting that the extracted components in Fig. 7 are true HR and
RR. Compared to the rest condition, the RR and HR increase in
both ex1 and ex 2 states. Specifically, at t = 3 min the subject
was asked to perform a moderate cycling exercise at 15 km/h,
the RR in the ex1 state is found to increase from 0.3 to 0.4 Hz
[Fig. 8(a)]. Simultaneously, the HR gradually increases from
1.45 to ∼1.75 Hz after ∼15 s of cycling [Fig. 8(b)]. The high-
intensity exercise (25 km/h) performed 3 min later resulted in a
higher RR and HR. HR peaks at 2 Hz at the end of ex2 while
the RR increases to 0.5 Hz. At t = 9 min, the subject stopped
cycling and was asked to inhale and exhale deeply at a slow pace
until t = 10.5 min, whereupon the subject was asked to breathe
normally. During the subject’s deep-breathing period, the TFR
diagram reveals higher amplitude of RR as well as a gradually
decreasing HR. At the end of monitoring, the subject appeared
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Fig. 7 Representative figure showing (a) a reduced frame (frame 239, t = 12 s) under rest condition from experiment 2, (b) iPPG signal, and
(c) the extracted physiological components for three randomly selected sets of iPPG signal under resting conditions (t = 65–80 s), exercise 1 (t = 275
–290 s), and exercise 2 (t = 495–510 s). In the iPPG signal corresponding to the rest state, the respiration and the heart rate can be clearly observed.
The region from which the iPPG signal is obtained is indicated with a black box (10×5 pixels) and an arrow. The position where the three sets of
iPPG signal were selected is highlighted with three boxes.

to recuperate from the physical exercise as both RR and HR
returned to the rest level.

4 Discussion
The performance of the iPPG system was evaluated by com-
paring it to a commercial pulse oximeter sensor. The strong

Fig. 8 TFR results for the extracted (a) respiratory and (b) pulsatile
signals with the color bar indicating the absolute power intensity.

correlation and good agreement between these two methods
for PPG capturing signals indicate that the iPPG system can
successfully obtain information about cardiovascular variables
such as respiration and heart rate. The method applied in this
study is well suited for motion-tolerant RR and HR measure-
ments during exercise. The results of the second experiment
verify the effectiveness of the proposed method for removing
motion-associated noise even under physical exercise of high
intensity.

The optimal amount of exercise to maintain fitness and re-
duce mortality from cardiovascular disease remains a matter of
debate. For instance, Lee et al. showed that moderate-intensity
exercise training was sufficient to produce substantial benefits,24

while Williams argued that high-intensity training produced pro-
portionally greater effects.25 Developing a remote and reliable
technique might help clinical professionals and biomedical re-
searchers to evaluate and optimize the effects of exercise. In
the present study, two different exercise levels, which represent
moderate- and high-intensity exercise, respectively, were per-
formed by 12 normotensive subjects. Compared to the resting
condition, a gradual increase in SBP and HR was uncovered in
the post-ex1 and post-ex2 states, which agrees well with previ-
ous studies.26, 27 Moreover, Bland-Altman analysis showed that
the physiological signals obtained from the iPPG system were
comparable to the commercial contact sensor; the maximum
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heart rate difference was <3 bpm in all states. The word “com-
parable” in clinical applications means that measurements by
the two instruments should be sufficiently close, thereby not
changing the actions and decisions regarding the patient.12 The
clinically acceptable error of such measurements depends on
the application (e.g., in the Emergency Severity Index triage,
an adult patient with a heart rate of >100 bpm is considered to
be tachycardic).28 In this case, a difference of <3 bpm (<3%
error) obtained by our experimental remote iPPG system would
be acceptable.

Compared to the contact PPG sensor, the iPPG technique is
still not extensively accepted in clinical applications mainly due
to the problem of motion artifacts. One recent study7 reports
attempts to remove/attenuate the motion artifacts from iPPG
signals. The method was based on automatic face tracking and
blind source separation of multichannel signals (i.e., R, G, and
B color signals) into independent components. The motion ar-
tifacts evaluated were typically slow and relatively small move-
ments, such as tilting the head sideways, nodding the head, or
looking up/down. Although such an approach is not suitable for
the present study (monochrome camera), the pioneering research
in Ref. 7 attempts an alternative approach to compensate for mo-
tion for a more effective extraction of physiological variables.
Specifically, in the present study, after a sequence of images was
recorded, motion compensation techniques (2-D cross correla-
tion) were first employed to bring successive images into spatial
alignment. This approach removes most of the motion artifacts
and results in accurate and reliable data. The desired physiolog-
ical measurements (i.e., heart and respiration rates) can then be
extracted through blind source separation (SCICA in this study).
With the help of this novel approach, continuous pulsatile and
respiratory variations were successfully traced under different
exercise levels, producing results that were consistent with those
obtained in experiment 1.

This study addresses the planar motion artifact in pulse wave-
forms acquired from iPPG. Cross-correlation measures the de-
gree of similarity between an image and a template. In the
present study, a user-defined region is employed and serves
as a template for image coordinate transformation which as-
sumes that the two images differ only by a 2-D translation. In
experiment 2, the participant was free to move his body dur-
ing exercise while remaining seated to minimize the swaying of
body and maintaining the direction of his face toward the camera
to attenuate the nonplanar motion. Typical movements included
lateral tilting of the head (where the amplitude increased with
exercise intensity), and mild leaning of the body (and hence the
head) toward/away from the camera due to deep breathing. In-
voluntary motion artifacts are inherently complex and cannot be
completely removed through 2-D cross-correlation. However,
the primary application introduced in this paper is to extract
useful physiological variables from the images recorded during
exercise. Furthermore, frame numbers in the long-term monitor-
ing could be huge (e.g., 14,400 frames for 12-min recording at
20 fps). In this study, therefore, the motion artifact reduction
technique should be simple as well as accurate. Another limi-
tation is the determination of the extracted independent compo-
nents. As can be seen in Fig. 7(c), the physiological waveforms
are not constant in the extracted components under different con-
ditions (e.g., the pulsatile signals are recovered in IC#4 in the
rest state while in IC#7 and IC#11 in ex1 and ex2, respectively).

5 Conclusion
The emerging field of imaging PPG technologies offers some
nascent opportunities in effective and comprehensive interpre-
tation of the physiological parameters (e.g., heart/respiratory
rate, tissue blood perfusion, and arterial oxygen saturation dis-
tributions), indicating a promising alternative to conventional
contact PPG. In the present study, we have described, imple-
mented, and evaluated a novel imaging PPG methodology for
the recovery of physiological parameters from different anatom-
ical locations under various conditions. The results of this study
have demonstrated that the clinical assessment of vital signs
could be remotely assessed in situations of significant motion,
thus supporting its use in new applications such as triage and
sports training. Further development of a fully automated phys-
iological parameters extraction technique is a subject of a future
study. A further study is also needed to assess the performance
of the system with a larger number of subjects.
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