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Abstract. Large-scale linear operations are the cornerstone for performing complex computational tasks.
Using optical computing to perform linear transformations offers potential advantages in terms of speed,
parallelism, and scalability. Previously, the design of successive spatially engineered diffractive surfaces
forming an optical network was demonstrated to perform statistical inference and compute an arbitrary
complex-valued linear transformation using narrowband illumination. We report deep-learning-based
design of a massively parallel broadband diffractive neural network for all-optically performing a large
group of arbitrarily selected, complex-valued linear transformations between an input and output field of
view, each with Ni and No pixels, respectively. This broadband diffractive processor is composed of Nw

wavelength channels, each of which is uniquely assigned to a distinct target transformation; a large set of
arbitrarily selected linear transformations can be individually performed through the same diffractive
network at different illumination wavelengths, either simultaneously or sequentially (wavelength scanning).
We demonstrate that such a broadband diffractive network, regardless of its material dispersion, can
successfully approximate Nw unique complex-valued linear transforms with a negligible error when the
number of diffractive neurons (N) in its design is ≥2NwNiNo . We further report that the spectral multiplexing
capability can be increased by increasing N ; our numerical analyses confirm these conclusions for Nw > 180
and indicate that it can further increase to Nw ∼ 2000, depending on the upper bound of the approximation
error. Massively parallel, wavelength-multiplexed diffractive networks will be useful for designing high-
throughput intelligent machine-vision systems and hyperspectral processors that can perform statistical
inference and analyze objects/scenes with unique spectral properties.
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1 Introduction
Computing plays an increasingly vital role in constructing
intelligent, digital societies. The exponentially growing power
consumption of digital computers brings some important
challenges for large-scale computing. Optical computing can
potentially provide advantages in terms of power efficiency,

processing speed, and parallelism. Motivated by these, we have
witnessed various research and development efforts on advancing
optical computing over the last few decades.1–32 Synergies between
optics and machine learning have enabled the design of novel
optical components using deep-learning-based optimization,33–44

while also allowing the development of advanced optical/photonic
information processing platforms for artificial intelligence.5,20–32,45

Among different optical computing designs, diffractive opti-
cal neural networks represent a free-space-based framework that*Address all correspondence to Aydogan Ozcan, ozcan@ucla.edu
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can be used to perform computation, statistical inference, and
inverse design of optical elements.22 A diffractive neural net-
work is composed of multiple transmissive and/or reflective
diffractive layers (or surfaces), which leverage light–matter
interactions to jointly perform modulation of the input light field
to generate the desired output field. These passive diffractive
layers, each containing thousands of spatially engineered dif-
fractive features (termed as “diffractive neurons”), are designed
(optimized) in a computer using deep-learning tools, e.g.,
stochastic gradient descent and error backpropagation. Once the
training process converges, the resulting diffractive layers are
fabricated to form a passive, free-space optical processing unit
that does not consume any power except the illumination light.
This framework is also scalable, since it can adapt to changes in
the input field of view (FOV) or data dimensions by adjusting
the size and/or the number of diffractive layers. Diffractive
networks can directly access the 2D/3D input information of
a scene or object and process the optical information encoded
in the amplitude, phase, spectrum, and polarization of the input
light, making them highly suitable as intelligent optical front
ends for machine-vision systems.

Diffractive neural networks have been used to perform
various optical information processing tasks, including, object
classification,22,46–57 image reconstruction,52,58,59 all-optical phase
recovery and quantitative image phase imaging,60 class-specific
imaging,61 super-resolution image displays,62 and logical
operations.63–65 Employing successive spatially engineered diffrac-
tive surfaces as the backbone for inverse design of deterministic
optical elements also enabled numerous applications, such as spa-
tially controlled wavelength demultiplexing,66 pulse engineering,67

and orbital angular momentum multiplexing/demultiplexing.68

In addition to these task-specific applications, diffractive
networks also serve as general-purpose computing modules that
can be used to create compact, power-efficient all-optical pro-
cessors. Recent efforts have shown that a diffractive network can
be used to all-optically perform an arbitrarily selected, complex-
valued linear transformation between its input and output FOVs
with a negligible error when the number of trainable diffractive
neurons (N) approaches NiNo, where Ni and No represent the
number of pixels at the input and output FOVs, respectively.69

Using nontrainable, predetermined polarizer arrays within an
isotropic diffractive network, a polarization-encoded diffractive
processor was also demonstrated to accurately perform a group
of Np ¼ 4 distinct complex-valued linear transformations us-
ing a single system with N ≥ NpNiNo ¼ 4NiNo; in this case,
each one of these four optical transformations can be accessed
through a different combination of the input/output polariza-
tion states.70 This polarization-encoded diffractive system is
limited to a multiplexing factor of Np ¼ 4, since an additional
desired transformation matrix that can be assigned to a new
combination of input–output polarization states can be written
as a linear combination of the four linear transforms that are
already learned by the diffractive processor.70 These former
works involved monochromatic diffractive networks where a
single illumination wavelength encoded the input information
channels.

In this paper, we rigorously address and analyze the follow-
ing question. Let us imagine an optical black-box (composed of
diffractive surfaces and/or reconfigurable spatial light modula-
tors): how can that black-box be designed to simultaneously im-
plement, e.g., Nw > 1000 independent linear transformations
corresponding to >1000 different matrix multiplications (with

>1000 different independent matrices) at Nw > 1000 different
unique wavelengths? More specifically, here we report the
use of a wavelength multiplexing scheme to create a broadband
diffractive optical processor, which massively increases the
throughput of all-optical computing by performing a group of
distinct linear transformations in parallel using a single diffrac-
tive network. By encoding the input/output information of the
target linear transforms using Nw different wavelengths (i.e.,
λ1; λ2;…; λNw

), we created a single-broadband diffractive net-
work to simultaneously perform a group of Nw arbitrarily se-
lected, complex-valued linear transforms with negligible error.
We demonstrate that N ≥ 2NwNiNo diffractive neurons are
required to successfully implement Nw complex-valued linear
transforms using a broadband diffractive processor, where the
thickness values of its diffractive neurons constitute the only
variables optimized during the deep-learning-based training
process. Without loss of generality, we numerically demonstrate
wavelength-multiplexed universal linear transformations with
Nw > 180, which can be further increased to Nw ∼ 2000 based
on the approximation error threshold that is acceptable. We also
demonstrate that these wavelength-multiplexed universal linear
transformations can be implemented even with a flat material
dispersion, where the refractive index (n) of the material at
the selected wavelength channels is the same, i.e., nðλÞ ≈ no
for λ ∈ fλ1; λ2;…; λNw

g. The training process of these wave-
length-multiplexed diffractive networks was adaptively balanced
across different wavelengths of operation such that the all-optical
linear transformation accuracies of the different channels were
similar to each other, without introducing a bias toward any wave-
length channel or the corresponding linear transform.

It is important to emphasize that the goal of this work is not to
train the broadband diffractive network to implement the correct
linear transformations for only a few input–output field pairs.
We are not aiming to use the diffractive layers as a form of
metamaterial that can output different images or optical fields
at different wavelengths. Instead, our goal is to generalize the
performance of our broadband diffractive processor to infinitely
many pairs of input and output complex fields that satisfy
the target linear transformation at each spectral channel, thus
achieving universal all-optical computing of multiple complex-
valued matrix–vector multiplications, accessed by a set of illu-
mination wavelengths (Nw ≫ 1).

Moreover, we would like to clarify that the wavelength multi-
plexing scheme used for our framework in this paper should
not be confused with other efforts that integrated wavelength-
division multiplexing (WDM) technologies to optical neural
computing, such as in Refs. 71–73. In these earlier work,
WDM was utilized to encode the 1D input/output information
to perform a vector–matrix multiplication operation, where the
optical network was designed to perform only one linear trans-
formation based on a single input data vector, producing a single
output vector that is spectrally encoded. However, in our work,
we use the wavelength multiplexing to perform multiple inde-
pendent linear transformations (Nw ≫ 1) within a single optical
network architecture, where each of these complex-valued linear
transformations can be accessed at distinct wavelengths (simul-
taneously or sequentially). Also the input and output fields of
each one of these linear transformations in our framework are
spatially encoded in 2D at the input/output FOVs using the same
wavelength, rather than being spectrally encoded, as demon-
strated in earlier WDM-based designs.71–73 This unique feature
allows our diffractive network to all-optically perform a large
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group of independent linear transformations in parallel by
sharing the same 2D input/output FOVs.

Compared to the previous literature, this paper has various
unique aspects: (1) this is the first demonstration of a spatially
engineered diffractive system to achieve spectrally multiplexed
universal linear transformations; (2) the level of massive multi-
plexing that is reported through a single wavelength-multiplexed
diffractive network (e.g., Nw > 180) is significantly larger
compared to other channels of multiplexing, including polariza-
tion diversity,70 and this number can be further increased to Nw ≈
2000 with more diffractive neurons (N) used in the network
design; (3) deep-learning-based training of the diffractive layers
used adaptive spectral weights to equalize the performances of all
the linear transformations assigned to Nw different wavelengths;
(4) the capability to perform multiple linear transformations using
wavelength multiplexing does not require any wavelength-sensi-
tive optical elements to be added into the diffractive network de-
sign, except for wavelength scanning or broadband illumination
with demultiplexing filters; and (5) this wavelength-multiplexed
diffractive processor can be implemented using various materials
with different dispersion properties (including materials with a
flat dispersion curve) and is widely applicable to different parts
of the electromagnetic spectrum, including the visible band.
Furthermore, we would like to emphasize that since each dielec-
tric feature of this wavelength-multiplexed diffractive processor is
based on material thickness variations, it simultaneously modu-
lates all the wavelengths within the spectrum of interest. This
means that each wavelength channel within the set of Nw unique
wavelengths has a different error gradient with respect to the op-
tical transformation that is assigned to it, and therefore, the dif-
fractive layer optimization spanning Nw wavelengths deviates
from the ideal optimization path of an individual wavelength.
Since the diffractive layers considered here do not possess any
spectral selectivity, we used a training loss function, simultane-
ously taking into account all the wavelength channels that were
used to find a locally optimal intersection set among all the Nw
wavelengths to accurately perform all the desired Nw transforma-
tions. This behavior is quite different from the earlier generations
of monochromatic diffractive processors69 that optimized the
phase profiles of the diffractive layers for only one wavelength
assigned to one optical transformation.

Based on the massive parallelism exhibited by this broadband
diffractive network, we believe that this platform and the underly-
ing concepts can be used to develop optical processors operating at
different parts of the spectrum with extremely high computing
throughput. Its throughput can be further increased by expanding
the range and/or the number of encoding wavelengths as well as
by combining wavelength multiplexing with other multiplexing
schemes such as polarization encoding. The reported framework
would be valuable for the development of multicolor and hyper-
spectral machine-vision systems that perform statistical inference
based on the spatial and spectral information of an object or a scene,
which may find applications in various fields, including biomedical
imaging, remote sensing, analytical chemistry, andmaterial science.

2 Results

2.1 Design of Wavelength-Multiplexed Diffractive
Optical Networks for Massively Parallel Universal
Linear Transformations

Throughout this paper, the terms “diffractive deep neural net-
work,” “diffractive neural network,” “diffractive optical network,”

and “diffractive network” are used interchangeably. Figure 1 il-
lustrates the schematic of our broadband diffractive optical net-
work design for massively parallel, wavelength-multiplexed
all-optical computing. The broadband diffractive network, com-
posed of eight successive diffractive layers, contains in total N
diffractive neurons with their thickness values as learnable var-
iables, which are jointly trained to perform a group of Nw linear
transformations between the input and output FOVs through Nw
parallel wavelength channels. More details about this diffractive
architecture, its optical forward model, and training details can
be found in Sec. 4. To start with, a group of Nw different wave-
lengths, λ1; λ2;…; λNw

, are selected to be used as the wavelength
channels for the broadband diffractive processor to encode
different input complex fields and perform different target trans-
formations (see Fig. 1). For the implementation of the broad-
band diffractive designs in this paper, we fixed the mean
value λm of this group of wavelengths fλ1; λ2;…; λNw

g, i.e.,
λm ¼ 1

Nw

PNw
w¼1 λw and assigned these wavelengths to be equally

spaced between λ1 ¼ 0.9125λm and λNw
¼ 1.0875λm. Unless

otherwise specified, we chose λm to be 0.8 mm in our numerical
simulations, as it aligns with the terahertz band that was exper-
imentally used in several of our previous works.50,52,58,59,61,62,66,67

Without loss of generality, the wavelengths used for the design
of the broadband diffractive processors can also be selected at
other parts of the electromagnetic spectrum, such as the visible
band, for which the related simulation results and analyses can
be found in Sec. 3 to follow. Based on the scalar diffraction
theory, the broadband optical fields propagating in the diffrac-
tive system are simulated at these selected wavelengths using a
sampling period of 0.5λm along both the horizontal and vertical
directions. We also select 0.5λm as the size of the individual neu-
rons on the diffractive layers. With these selections, we include
in our optical forward model all the propagating modes that are
transmitted through the diffractive layers.

Let i and o0 be the complex-valued, vectorized versions of
the 2D input and output broadband complex fields at the input
and output FOVs of the diffractive network, respectively,
as shown in Fig. 1. We denote iw and o0w as the complex fields
generated by sampling the optical fields at the wavelength λw
ðw ∈ f1; 2;…; NwgÞ within the input and output FOVs, respec-
tively, and then vectorizing the resulting 2D matrices in column-
major order. According to this notation, iw and o0w represent
the input and output of the wth wavelength channel in our
wavelength-multiplexed diffractive network, respectively. In the
following analyses, without loss of generality, the number of
pixels at the input and output FOVs is selected to be the same,
i.e., Ni ¼ No.

To implement Nw target linear transformations, we randomly
generated Nw complex-valued matrices A1;A2;…;ANw

, each
composed of Ni × No entries, to serve as a group of unique
arbitrary linear transformations to be all-optically implemented
using a wavelength-multiplexed diffractive processor. All these
matrices, A1;A2;…;ANw

, are generated using unique random
seeds to ensure that they are different; we further confirmed
the differences between these randomly generated matrices
by calculating the cosine similarity values between any two
combinations of the matrices in a given set (see e.g., Fig. S1
in the Supplementary Material). For each unique matrix
Aw ∈ fA1;A2;…;ANw

g, we randomly generated a total of
70,000 complex-valued input field vectors fiwg and created
the corresponding output field vectors fowg by calculating
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ow ¼ Awiw. We separated these input–output complex field pairs
into three individual sets for training, validation, and testing,
each containing 55,000, 5000, and 10,000 samples, respectively.
By increasing the size of these training data sets to >100,000
input–output pairs of randomly generated complex fields, it is
possible to further improve the transformation accuracy of the
trained broadband diffractive networks; since this does not
change the general conclusions of this work, it is left as future
work. More details on the generation of the training and testing
data can be found in Sec. 4.

Based on the notations introduced above, the objective of
training our wavelength-multiplexed diffractive processor is
that, for any of its wavelength channels operating at λw
ðw ∈ f1; 2;…; NwgÞ, the diffractive output fields fo0wg com-
puted from any given inputs fiwg should provide a match to

the output ground-truth (target) fields fowg. If this can be
achieved for any arbitrary choice of fiwg, this means that the
all-optical transformations A0

w performed by the trained broad-
band diffractive system at different wavelength channels consti-
tute an accurate approximation to their ground-truth (target)
transformation matrices Aw, where w ∈ f1; 2;…; Nwg.

As the first step of our analysis, we selected the input/output
field size to be Ni ¼ No ¼ 8 × 8 ¼ 64 and started to train
broadband diffractive processors with Nw ¼ 2, 4, 8, 16, and
32 wavelength channels. Results and analysis of implementing
more wavelength channels (e.g., Nw > 100) through a single
diffractive processor will be provided in later sections. For this
task, we randomly generated a set of 32 different matrices with
dimensions of 64 × 64, i.e., A1;A2;…;A32, with their first eight
visualized (as examples) in Fig. 2(a) with their amplitude and

Fig. 1 Schematic of massively parallel, wavelength-multiplexed diffractive optical computing.
Optical layout of the wavelength-multiplexed diffractive neural network, where the diffractive layers
are jointly trained to perform Nw different arbitrarily selected, complex-valued linear transforma-
tions between the input field i and the output field o 0 using wavelength multiplexing. The optical
fields at the input FOV, i1; i2;…; iNw

, are encoded at a predetermined set of distinct wavelengths
λ1; λ2;…; λNw

, respectively, using a wavelength multiplexing (“MUX”) scheme. At the output FOV of
the broadband diffractive network, wavelength demultiplexing (“DEMUX”) is performed to
extract the diffractive output fields o 0

1;o
0
2;…;o 0

Nw
at the corresponding wavelengths λ1; λ2;…; λNw

,
respectively, which represent the all-optical estimates of the target output fields o1;o2;…;oNw

,
corresponding to the target linear transformations (A1;A2;…;ANw

). Through this diffractive
architecture, Nw different arbitrarily selected complex-valued linear transformations can be all-
optically performed at distinct wavelengths, running in parallel channels of the broadband diffrac-
tive processor.
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phase components. Figure S1a in the Supplementary Material
also reports the cosine similarity values between these randomly
generated 32 matrices, confirming that they are all very close to
0. For each Nw mentioned above, we also trained several broad-
band diffractive designs with different numbers of trainable
diffractive neurons, i.e., N ∈ {3900; 8200; 16,900; 32,800;
64,800; 131,100; 265,000}, all using the same training data sets
{(iw, ow)}, randomly generated based on the target transforma-
tions fAwg (w ∈ f1; 2;…; Nwg) and the same number of train-
ing epochs.

To benchmark the performance of these wavelength-multi-
plexed diffractive networks for each N, we also trained mono-
chromatic diffractive networks without using any wavelength
multiplexing as our baseline, which can approximate only
one target linear transformation using a single wavelength
(i.e., Nw ¼ 1). Here we simply select λm as the operating wave-
length of this baseline monochrome diffractive network used
for comparison.

During the training of these diffractive networks, mean
squared error (MSE) loss is calculated per wavelength channel
to make the diffractive output fields come as close to the ground-
truth (target) fields as possible. However, in the wavelength-
multiplexed diffractive models, treating all these channels
equally in the final loss function would result in the all-optical
transformation accuracies being biased, since longer wave-
lengths present lower spatial resolution. To address this issue
and equalize the all-optical transformation accuracies of all
the wavelengths within the selected channel set, we devised a
strategy by adaptively adjusting the weight coefficients applied
to the loss terms of these channels during the training process
(see Sec. 4 for details).

After the deep-learning-based training of the broadband
diffractive designs introduced above is completed, the resulting
all-optical diffractive transformations of these models are
summarized in Figs. 2(b)–2(d). We quantified the generalization
performance of these broadband diffractive networks on the
blind testing data set for each transformation using three
different metrics: (1) the normalized transformation MSE
(MSETransformation), (2) the cosine similarity (CosSim) between
the all-optical transforms and the target transforms, and
(3) the MSE between the diffractive network output fields and
their ground-truth output fields (MSEOutput).

53,69 More details
about the definitions of these performance metrics are provided
in Sec. 4. For the diffractive designs with different numbers of
wavelength channels (Nw ¼ 1, 2, 4, 8, 16, and 32), we report
these performance metrics in Figs. 2(b)–2(d) as a function of
the number of trainable diffractive neurons (N). These perfor-
mance metrics reported in Fig. 2 refer to the mean values calcu-
lated across all the wavelength channels, whereas the results of
the individual wavelength channels are shown in Fig. 3.

In Fig. 2(b), it can be seen that the transformation errors of all
the trained diffractive models show a monotonic decrease as N
increases, which is expected due to the increased degrees of
freedom in the diffractive processor. Also the approximation
errors of the regular diffractive networks without using wave-
length multiplexing, i.e.,Nw ¼ 1, approaches 0 asN approaches
2NiNo ≈ 8200. This observation confirms the conclusion ob-
tained in our previous work,69,70 i.e., a phase-only monochrome
diffractive network requires at least 2NiNo diffractive neurons
to approximate a target complex-valued linear transformation
with negligible error. On the other hand, for the wavelength-
multiplexed diffractive models with Nw different wavelength

channels that are trained to approximate Nw unique linear
transforms, we see in Fig. 2 that the approximation errors ap-
proach 0 as N approaches 2NwNiNo. This finding indicates
that compared to a baseline monochrome diffractive model
that can only perform a single transform, performing multiple
distinct transforms using wavelength multiplexing within
a single diffractive network requires its number of trainable
neurons N to be increased by Nw-fold. This conclusion is
further supported by the results of the other two performance
metrics, CosSim and MSEOutput, as shown in Figs. 2(c) and
2(d): as N approaches 2NwNiNo, CosSim and MSEOutput of the
wavelength-multiplexed diffractive models approach 1 and 0,
respectively.

To reveal the linear transformation performance of the indi-
vidual wavelength channels in our wavelength-multiplexed dif-
fractive processors, in Fig. 3, we show the channel-wise output
field errors ðMSEOutputÞ of the wavelength-multiplexed diffrac-
tive networks withNw ¼ 2, 4, 8, 16, and 32 and N ¼ 2NwNiNo.
Figure 3 indicates that the MSEOutput of these individual chan-
nels are very close to each other in all the designs with different
Nw, demonstrating no significant performance bias toward any
specific wavelength channel or target transform. For compari-
son, we also show in Fig. S2 in the Supplementary Material,
the resulting MSEOutput of the diffractive model with Nw ¼ 8
and N ¼ 2NwNiNo ¼ 16NiNo when our channel balancing
training strategy with adaptive weights was not used (see
Sec. 4). There appears to be a large variation at the output field
errors among the different wavelength channels if adaptive
weights were not used during the training; in fact, the channels
assigned to longer wavelengths tend to show much inferior
transformation performance, which highlights the significance
of using our balancing strategy during the training process.
Stated differently, unless a channel balancing strategy is em-
ployed during the training phase, longer wavelengths suffer
from relatively lower spatial resolution and face increased all-
optical transformation errors compared to the shorter wave-
length channels.

To visually demonstrate the success of our broadband diffrac-
tive system in performing a group of linear transformations
using wavelength multiplexing, in Fig. 4, we show examples
of the ground-truth transformation matrices (i.e., Aw) and their
all-optical counterparts (i.e., A0

w) resulting from the diffractive
designs with Nw ¼ 8 and N∈f2NwNiNo¼16NiNo¼64;800;
4NwNiNo¼32NiNo¼131,100g. The amplitude and phase
absolute errors between the two (Aw and A0

w) are also reported
in the same figure. Moreover, in Fig. 5 and Fig. S3 in
the Supplementary Material, we present some exemplary
complex-valued input–output optical fields from the same
set of diffractive designs with N ¼ 4NwNiNo ¼ 131,100 and
N ¼ 2NwNiNo ¼ 64; 800, respectively. These results, summa-
rized in Figs. 4 and 5 and Fig. S3 in the Supplementary
Material, reveal that, when N ≥ 2NwNiNo, the all-optical
transformation matrices and the output complex fields of all
the wavelength channels match their ground-truth targets very
well with negligible error, which is also in line with our earlier
observations in Fig. 2.

2.2 Limits of Nw: Scalability of Wavelength-Multiplexing
in Diffractive Networks

We have so far demonstrated that a single broadband diffractive
network can be designed to simultaneously perform a group
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Fig. 2 All-optical transformation performances of broadband diffractive networks using different
numbers of wavelength channels. (a) As examples, we show the amplitude and phase of the first
eight matrices in fA1;A2;…;A32g that were randomly generated, serving as the ground truth
(target) for the diffractive all-optical transformations. See Fig. S1 in the Supplementary Material
for the cosine similarity values calculated between any two combinations of these 32 target linear
transformation matrices. (b) The mean values of the normalized MSE between the ground-truth
transformation matrices (Aw ) and the corresponding all-optical transforms (A0

w ) across different
wavelength channels are reported as a function of the number of diffractive neuronsN . The results
of the diffractive networks using different numbers of wavelength channels ðNw Þ are encoded
with different colors, and the space between the simulation data points is linearly interpolated.
Nw ∈ {1, 2, 4, 8, 16, and 32}, N ∈ {3.9k, 8.2k, 16.9k, 32.8k, 64.8k, 131.1k, 265.0k} and
Ni ¼ No ¼ 82. (c) Same as (b) but the cosine similarity values between the all-optical transforms
and their ground truth are reported. (d) Same as (b) but the MSE values between the diffractive
network output fields and the ground-truth output fields are reported.
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of Nw arbitrary complex-valued linear transformations, with
Nw ¼ 2, 4, 8, 16, and 32 (Figs. 2 and 3). Next, we explore
the feasibility of implementing a significantly larger number of
wavelength channels in our system to better understand the lim-
its of Nw. Due to our limited computational resources available,
to simulate the behavior of larger Nw values, we selected
Ni ¼ No ¼ 5 × 5 and Nw ∈ f1;2;4;8;16;32;64;128; and184g.
Accordingly, we generated a new set of 184 different arbitrarily
selected complex-valued matrices with dimensions of 25 × 25,
i.e., A1;A2;…;A184, as the target linear transformations to be
all-optically implemented. The cosine similarity values between
these randomly generated matrices are reported in Fig. S1b in
the Supplementary Material, confirming that they are all very
close to 0. We also created training, validation, and testing data
sets based on these new target transformation matrices following
the same approach as in the previous section: for each transfor-
mation matrix, we randomly generated 55,000, 5000, and
10,000 field samples for the training, validation, and testing data
sets, respectively. Then using the training field data sets, we
trained broadband diffractive designs with Nw different wave-
length channels, where the Nw target transforms were taken
from the first Nw matrices in the randomly generated set
fA1;A2;…;A184g. For each Nw choice, we also trained diffrac-
tive models with different numbers of diffractive neurons, in-
cluding N ¼ 1.5NwNiNo, N ¼ 2NwNiNo, and N ¼ 3NwNiNo.

The all-optical transformation performance metrics of the re-
sulting diffractive networks on the testing data sets are shown in
Fig. 6 as a function of Nw. Figures 6(a)–6(c) reveal that the all-
optical transformations of the diffractive designs with different
N show some increased error as Nw increases. For the diffractive

models with N ¼ 3NwNiNo, the all-optical transformation er-
rors ðMSETransformationÞ at smaller Nw appear to be extremely
small and do not exhibit the same performance degradation with
increasing Nw; only after Nw > 10 we see an error increase in
the all-optical transformations for N ¼ 3NwNiNo. By compar-
ing the linear transformation performance of the models with
different N, Fig. 6 clearly reveals that adding more diffractive
neurons to a broadband diffractive network design can greatly
improve its transformation performance, which is especially
important to operate at a large Nw.

By having a linear fit to the data points shown in Figs. 6(a)
and 6(c), we can extrapolate to larger Nw values and predict an
all-optical transformation error bound as a function of Nw. With
these fitted (dashed) lines shown in Figs. 6(a) and 6(c), we get
a coarse prediction of the linear transformation performance of
a broadband diffractive model with a significantly larger number
of wavelength channels Nw that is challenging to simulate due
to our limited computer memory and speed. Interestingly, these
three fitted lines (corresponding to diffractive designs with
N ¼ 1.5NwNiNo, N ¼ 2NwNiNo, and N ¼ 3NwNiNo) inter-
sect with each other at a point around Nw ¼ 10,000 with an
MSETransformation of ∼0.2 and an MSEOutput of ∼0.03. This level
of transformation error coincides with the error levels observed
at the beginning of our training, implying that a broadband dif-
fractive model with Nw ¼ ∼10,000, even after training, would
only exhibit a performance level comparable to an untrained
model. These analyses indicate that, for a broadband diffractive
network trained with N ≤ 3NwNiNo and a training data set of
55,000 optical field pairs, there is an empirical multiplexing
upper bound of Nw ¼ ∼10,000.

Fig. 3 All-optical transformation performances of the individual wavelength channels in broad-
band diffractive network designs with N ≈ 2NwNiNo and Ni ¼ No ¼ 82. The output field errors
ðMSEOutputÞ for the all-optical linear transforms achieved by the wavelength-multiplexed diffractive
network models with (a) 2-channel wavelength multiplexing (Nw ¼ 2), N ≈ 4NiNo ; (b) 4-channel
wavelength multiplexing (Nw ¼ 4), N ≈ 8NiNo ; (c) 8-channel wavelength multiplexing (Nw ¼ 8),
N ≈ 16NiNo ; (d) 16-channel wavelength multiplexing (Nw ¼ 16), N ≈ 32NiNo ; and (e) 32-chan-
nel wavelength multiplexing (Nw ¼ 32), N ≈ 64NiNo . The standard deviations (error bars) of
these metrics are calculated across the entire testing data set.
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However, before reaching this Nw ¼ ∼10,000 ultimate limit
discussed above, practically the desired level of approximation
accuracy will set the actual limit of Nw. For example, based on
visual inspection and the calculated peak signal-to-noise ratio
(PSNR) values, one can empirically choose a blind testing error
of MSEOutput ∼ 10−3 as a threshold for the diffractive network’s
all-optical approximation error; this threshold corresponds to a
mean PSNR value of ∼20 dB, calculated for the diffractive net-
work output fields against their ground truth (see Fig. S4 in the
Supplementary Material). We marked thisMSEOutput-based per-
formance threshold in Fig. 6(c) using a black dashed line, which
also corresponds to a transformation error ðMSETransformationÞ of
∼9 × 10−3, which was also marked in Fig. 6(a) with a black
dashed line. Based on these empirical performance thresholds
set by MSEOutput ≈ 10−3 and PSNR ≈ 20 dB, we can infer
that a broadband diffractive processor with N ¼ 3NwNiNo can
accommodate up to Nw ∼ 2000 wavelength channels, where
∼2000 different linear transformations can be performed
through a single broadband diffractive processor within the per-
formance bounds shown in Figs. 6(a) and 6(c) (see the purple

dashed lines). The same analysis reveals a reduced upper
bound of Nw ∼ 600 for the diffractive network designs with
N ¼ 2NwNiNo (see the green dashed lines).

2.3 Impact of Material Dispersion and Losses on
Wavelength-Multiplexed Diffractive Networks

In the previous section, we showed that a broadband diffractive
processor can be designed to implement >180 different target
linear transforms simultaneously, and this number can be further
extended to Nw ∼ 2000 based on an all-optical approximation
error threshold ofMSEOutput ≈ 10−3. In this section, we provide
additional analyses on material-related factors that have an im-
pact on the accuracy of wavelength-multiplexed computing
through broadband diffractive networks. For example, the selec-
tion of materials with different dispersion properties (i.e., the
real and imaginary parts of the refractive index as a function
of the wavelength) will impact the light–matter interactions
at different illumination wavelengths. To numerically explore
the impact of material dispersion and related optical losses,

Fig. 4 All-optical transformation matrices estimated by two different wavelength-multiplexed
broadband diffractive networks with Nw ¼ 8 and Ni ¼ No ¼ 82. The first broadband diffractive
network has N ≈ 2NwNiNo ¼ 16NiNo ¼ 64,800 trainable diffractive neurons. The second broad-
band diffractive network has N ≈ 4NwNiNo ¼ 32NiNo ¼ 131,100 trainable diffractive neurons.
The absolute differences between these all-optical transformation matrices and the correspond-
ing ground-truth (target) matrices are also shown in each case. N ¼ 131,100 diffractive design
achieves a much smaller and negligible absolute error due to the increased degrees of freedom.

Li et al.: Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network

Advanced Photonics 016003-8 Jan∕Feb 2023 • Vol. 5(1)

https://doi.org/10.1117/1.AP.5.1.016003.s01


we took the broadband diffractive network design shown in
Fig. 6 with Nw ¼ 128 and N ¼ 3NwNiNo and retrained it using
different materials. The first material we selected is a lossy
polymer that is widely employed as a 3D printing material;
this material was used to fabricate diffractive networks that
operate at the terahertz part of the spectrum.52,66,67 The dispersion
curves of this lossy material are shown in Fig. S5a in the
Supplementary Material, which were also used in the design
of the diffractive networks reported in the previous sections
(with λm ¼ 0.8 mm). As a second material choice for compari-
son, we selected a lossless dielectric material, for which we took
N-BK7 glass as an example and used its dispersion to simulate
our wavelength-multiplexed diffractive processor design at the
visible wavelengths with λm ¼ 530 nm; the dispersion curves of
this material are reported in Fig. S5b in the Supplementary
Material. As a third material choice for comparison, we consid-
ered a hypothetical scenario where the material of the diffractive
layers had a flat dispersion at around λm ¼ 0.8 mm, with no ab-
sorption and a constant refractive index (∼1.72) across all the

selected wavelength channels of interest; see the refractive index
curve of this “dispersion-free” material in Fig. S5c in the
Supplementary Material.

After the training of the diffractive network models using
these different materials selected for comparison, we summa-
rized their all-optical linear transformation performance in
Figs. 7(a)–7(c) (see the purple bars). These results reveal that
all three diffractive models with different material choices
achieved negligible all-optical transformation errors, regardless
of their dispersion characteristics. This confirms the feasibility
of extending our wavelength-multiplexed diffractive processor
designs to other spectral bands with vastly different material
dispersion features.

In addition to the all-optical transformation accuracy, the out-
put diffractive efficiency (η) of these diffractive network models
is also practically important. As shown in Fig. 7(d), due to the
absorption by the layers, the diffractive network model using the
lossy polymer material presents a very poor output diffraction
efficiency η compared to the other two diffractive models that

Fig. 5 Examples of the input/output complex fields for the ground-truth (target) transformations
along with the all-optical output fields resulting from the 8-channel wavelength-multiplexed diffrac-
tive design using N ≈ 4NwNiNo ¼ 32NiNo ¼ 131,100. Absolute errors between the ground-truth
output fields and the all-optical diffractive network output fields are negligible. Note that j∠o − ∠ô 0jπ
indicates the wrapped phase difference between the ground-truth output field o and the
normalized diffractive network output field ô 0.
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Fig. 6 Exploration of the limits of the number of wavelength channels ðNw Þ that can be imple-
mented in a broadband diffractive network. (a) The mean values of the normalized MSE between
the ground-truth transformation matrices (Aw ) and the all-optical transforms (A0

w ) across different
wavelength channels are reported as a function of Nw ∈ f1; 2; 4; 8; 16; 32; 64; 128; 184g. The re-
sults of the broadband diffractive networks using different numbers of diffractive neurons (N) are
presented with different colors: N ∈ f1.5NwNiNo ; 2NwNiNo ; 3NwNiNog. Dotted lines are fitted
based on the data points whose diffractive networks share the same N . (b) Same as (a) but
the cosine similarity values between the all-optical transforms and their ground truth are reported.
(c) Same as (a) but the MSE values between the diffractive network output fields and the ground-
truth output fields are reported. Ni ¼ No ¼ 52.
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used lossless materials. In addition to the absorption of light
through the diffractive layers, a wavelength-multiplexed diffrac-
tive network also suffers from optical losses due to the propa-
gating waves that leak out of the diffractive processor volume.
This second source of optical loss within a diffractive network

can be strongly mitigated through the incorporation of diffrac-
tion efficiency-related penalty terms52,66,67,69 into the training loss
function (see Sec. 4 for details). The results of using such a dif-
fraction-efficiency-related penalty term during training are pre-
sented in Figs. 7(a)–7(d) (yellow bars), which indicate that the

Fig. 7 The impact of material dispersion and losses on the all-optical transformation performance
of wavelength-multiplexed broadband diffractive networks. (a) The mean values of the normalized
MSE between the ground-truth transformation matrices (Aw ) and the all-optical transforms (A0

w )
across different wavelength channels are reported as a function of the material of the diffractive
layers. The results of the diffractive networks trained with and without diffraction efficiency
penalty are presented in yellow and purple colors, respectively. Nw ¼ 128, N ¼ 3NwNiNo ,
and Ni ¼ No ¼ 52. (b) Same as (a) but the cosine similarity values between the all-optical
transforms and their ground truth are reported. (c) Same as (a) but the MSE values between
the diffractive network output fields and the ground-truth fields are reported. (d) The mean
diffraction efficiencies of the presented diffractive models across all the wavelength channels.
(e) Diffraction efficiency of the individual wavelength channels for the broadband diffractive net-
work model presented in (a)–(d) that uses the dielectric material without the diffraction efficiency-
related penalty term in its loss function. (f) Same as (e), but the diffractive network was trained
using a loss function with the diffraction efficiency-related penalty term.
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Fig. 8 All-optical transformation performance of broadband diffractive network designs with
Nw ¼ 184, reported as a function of N and the bit depth of the diffractive neurons. (a) The mean
values of normalizedMSE between the ground-truth transformation matrices (Aw ) and the all-optical
transforms (A0

w ) across different wavelength channels are reported as a function of N. The results
of the diffractive networks using different bit depths of the diffractive neurons, including 4, 8, 12, and
32, are encoded with different colors, and the space between the data points is linearly interpolated.
N ∈ f0.5NwNiNo ¼ 56,000;NwNiNo ¼ 115.000;2NwNiNo ¼ 231,000;4NwNiNo ¼ 461,000g, and
Ni ¼ No ¼ 52. (b) Same as (a) but the cosine similarity values between the all-optical transforms
and their ground truth are reported. (c) Same as (a) but the MSE values between the diffractive
network output fields and the ground-truth output fields are reported.
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output diffraction efficiencies of the corresponding models were
improved by >589 to 1479-fold compared to their counterparts
that were trained without using such a penalty term [see
Fig. 7(d)]. We also show in Figs. 7(e) and 7(f), the output
diffraction efficiencies of the individual wavelength channels
trained without and with the diffraction-efficiency penalty term,
respectively. These results also revealed that the diffraction-
efficiency-related penalty term used during training not only im-
proved the overall output efficiency of the diffractive processor
design but also helped to mitigate the imbalance of diffraction
efficiencies among different wavelength channels [see Figs. 7(e)
and 7(f)]. These improvements also come at an expense; as
shown in Figs. 7(a)–7(c), there is some degradation in the
all-optical transformation performance of the diffractive net-
works that are trained with a diffraction-efficiency-related pen-
alty term. However, this relative degradation in the all-optical
transformation performance is still acceptable, since a cosine
similarity value of >0.996 to 0.998 is maintained in each case
[see Fig. 7(b), yellow bars].

2.4 Impact of Limited Bit Depth on the Accuracy of
Wavelength-Multiplexed Diffractive Networks

The bit depth of a broadband diffractive network refers to the
finite number of thickness levels that each diffractive neuron
can have on top of a common base thickness of each diffractive
layer. For example, in a broadband diffractive network with a bit
depth of 8, its diffractive neurons will be trained to have at most
28 ¼ 256 different thickness values that are distributed between
a predetermined minimum thickness and a maximum thickness
value. To mechanically support each diffractive layer, the mini-
mum thickness is always positive, acting as the base thickness of
each layer. To analyze the impact of this bit depth on the linear
transformation performance and accuracy of our wavelength-
multiplexed diffractive networks, we took the Nw ¼ 184 chan-
nel diffractive design reported in the previous sections (trained
using a data format with 32-bit depth) and retrained it from
scratch under different bit depths, including 4, 8, and 12.
Based on the same test data set, the all-optical linear transfor-
mation performance metrics of the resulting diffractive networks
are reported in Fig. 8 as a function of N. Figure 8 reveals that
a 12-bit depth is practically identical to using a 32-bit depth in
terms of the all-optical transformation accuracy that can be
achieved for the Nw ¼ 184 target linear transformations.
Furthermore, a bit depth of 8 can also be used for a broadband
diffractive network design to maintain its all-optical transformation
performance with a relatively small error increase, which can be
compensated for with an increase in N, as illustrated in Fig. 8.
These observations from Fig. 8 highlight (1) the importance
of having a sufficient bit depth in the design and fabrication
of a broadband diffractive processor and (2) the importance of
N as a way to boost the all-optical transformation performance
under a limited diffractive neuron bit depth.

2.5 Impact of Wavelength Precision or Jitter on the
Accuracy of Wavelength-Multiplexed Diffractive
Networks

Another possible factor that may cause systematic errors in
our framework is the wavelength precision or jitter. To analyze
the wavelength encoding related errors, we used the four-
channel wavelength-multiplexed diffractive network model with
N ≈ 2NwNiNo ¼ 8NiNo and Ni ¼ No ¼ 82 that was presented

in Fig. 3(b). We deliberately shifted the illumination wavelength
used for each encoding channel away from the preselected
wavelength used during the training (i.e., λ1 ¼ 0.9125λm,
λ2 ¼ 0.9708λm, λ3 ¼ 1.0292λm, and λ4 ¼ 1.0875λm). The re-
sulting linear transformation performance of the Nw ¼ 4 chan-
nels using different performance metrics is summarized in
Figs. 9(a)–9(c) as a function of the illumination wavelength.
All of these results in Fig. 9 show that as the illumination wave-
lengths used for each encoding channel gradually deviate from
their designed/assigned wavelengths (used during the training of
the wavelength-multiplexed diffractive network), their all-opti-
cal transformation accuracy begins to degrade. To shed more
light on this, we used the previous performance threshold based
on MSEOutput ≈ 10−3 as an empirical criterion to estimate the
tolerable range of illumination wavelength errors, which re-
vealed an acceptable bandwidth of ∼0.002λm for each one of
the encoding wavelength channels. Stated differently, when a
given illumination wavelength is within � ∼ 0.001λm of the
corresponding preselected wavelength assigned for that spectral
channel, the degradation of the linear transformation accuracy
at the output of the wavelength-multiplexed diffractive network
will satisfy MSEOutput ≤ 10−3. In practical applications, this
level of spectral precision can be routinely achieved by using
high-performance wavelength scanning sources74,75 (e.g., swept-
source lasers) or narrow passband thin-film filters.

2.6 Permutation-Based Encoding and Decoding Using
Wavelength-Multiplexed Diffractive Networks

So far, we have demonstrated the design of wavelength-multi-
plexed diffractive processors that can allow a massive number of
unique complex-valued linear transformations to be computed,
all in parallel, within a single diffractive optical network. To
exemplify some of the potential applications of this broadband
diffractive processor design, here we demonstrate the permuta-
tion matrix-based optical transforms, which have significance
for telecommunications (e.g., channel routing and intercon-
nects), information security, and data processing (see Fig. 10).
Similar to the approaches introduced earlier, we randomly gen-
erated eight permutation matrices, P1;P2;…;P8 [see Fig. 10(b)]
and trained a wavelength-multiplexed diffractive network with
Nw ¼ 8 and N ¼ 2NwNiNo ¼ 16NiNo ¼ 64; 800; this archi-
tecture has the same configuration as the one shown in Fig. 3(c),
and Fig. 4 (middle column), except it uses these new permuta-
tion matrices as the target transforms. After its training, in
Fig. 10(a), we show examples of permutation-based encoding
of input images using the trained broadband diffractive network.
After being all-optically processed by our wavelength-multi-
plexed diffractive network design, all the input images (iw)
are simultaneously permuted (encoded) according to the permu-
tation matrices assigned to the corresponding wavelength chan-
nels, resulting in the output fields o0w, which very well match
their ground truth ow [see Fig. 10(a)]. Stated differently, the
trained wavelength-multiplexed diffractive processor can suc-
cessfully synthesize the correct output field ow ¼ Pwiw for all
the possible input fields iw, since it presents an all-optical
approximation of Pw for w ∈ f1,2;…; 8g.

Similarly, we present in Fig. S6 in the Supplementary
Material that the same wavelength-multiplexed permutation
transformation network can be used to all-optically decode the
encoded/permuted patterns. In this case, the input encoded fields
are generated by transforming (permuting) the same input images
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Fig. 9 The impact of the encoding wavelength error on the all-optical linear transformation per-
formance of a wavelength-multiplexed broadband diffractive network; Nw ¼ 4, N ≈ 2NwNiNo ¼
8NiNo , and Ni ¼ No ¼ 82. (a) The normalized MSE values between the ground-truth transforma-
tion matrices (Aw ) and the all-optical transforms (A0

w ) for the four different wavelength channels are
reported as a function of the wavelengths used during the testing. The results of the different wave-
length channels are shown with different colors, and the space between the simulation data points
is linearly interpolated. (b) Same as (a) but the cosine similarity values between the all-optical
transforms and their ground truth are reported. (c) Same as (a) but the MSE values between
the diffractive network output fields and the ground-truth output fields are reported. The shaded
areas indicate the standard deviation values calculated based on all the samples in the testing
data set.
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Fig. 10 An example of a wavelength-multiplexed diffractive network (Nw ¼ 8, N ≈ 2NwNiNo ¼
16NiNo ¼ 64,800) that all-optically performs eight different permutation (encoding) operations be-
tween its input and output FOVs, with each target permutation matrix assigned to a unique wave-
length. (a) Input/output examples. Each one of the Nw ¼ 8 wavelength channels in the diffractive
processor is assigned to a different permutation matrix Pw . The absolute differences
between the diffractive network output fields and the ground-truth (target) permuted (encoded)
output fields are also shown in the last column. (b) Arbitrarily generated permutation matrices
P1;P2;…;P8 that serve as the ground truth (target) for the wavelength-multiplexed
diffractive permutation transformations shown in (a).
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using the inverse of the permutation matrices P1;P2;…;P8.
The results shown in Fig. S6 in the Supplementary Material in-
dicate that the wavelength-multiplexed diffractive network can
all-optically perform simultaneous decoding of all the input
images, very well matching their ground truth.

2.7 Experimental Validation of a Wavelength-
Multiplexed Diffractive Network

Next, we performed a proof-of-concept experimental validation
of our diffractive network using wavelength-multiplexed per-
mutation operations. With a frequency-tunable continuous-
wave terahertz (THz) setup shown in Fig. 11(a) (see Sec. 4
for its implementation details), we tested a wavelength-
multiplexed diffractive network design with Nw ¼ 2 and
Ni ¼ No ¼ 32, where the twowavelength channels were chosen
as λ1 ¼ 0.667 mm and λ2 ¼ 0.698 mm. Each one of these two
wavelength channels in this experimental design is assigned to a
unique, arbitrarily generated target permutation matrix (P1 and
P2, see Fig. S7 in the Supplementary Material), such that any
spatially structured pattern at the input FOV can be all-optically
permuted by the diffractive optical network to form different
desired patterns at the output FOV, performing P1 and P2 under
λ1 and λ2 illumination, respectively. For this, we used a diffrac-
tive network architecture with three diffractive layers, with
each layer having 120 × 120 diffractive features, each with a
lateral size of 0.4 mm (∼0.59λm). The axial spacing between
any two of the adjacent layers (including the input/output
planes) in this design was set as 20 mm (∼29.3λm). During
the training process, a total of 55,000 randomly generated
input–output field pairs corresponding to the target permutation
matrices (P1 and P2) were used to update the thickness values of
these diffractive layers. After the training converged, the result-
ing diffractive layers were fabricated using a 3D printer and
mechanically assembled to form a physical wavelength-multi-
plexed diffractive optical permutation processor, as shown in
Figs. 11(b)–11(d).

To experimentally test the performance of this 3D-fabricated
wavelength-multiplexed diffractive network, different input pat-
terns from the blind testing set (never used in training) were also
3D-printed and used as the input test objects. The experimental
test results are reported in Fig. 11(e), revealing that the output
patterns for all these input patterns show a good agreement with
their numerically simulated counterparts and the ground-truth
images. The success of these experimental results further con-
firms the feasibility of our wavelength-multiplexed diffractive
optical transformation networks.

3 Discussion
We demonstrated wavelength-multiplexed diffractive network
designs that can perform massively parallel universal linear
transformations through a single diffractive processor. We also
quantified the limits of Nw and the impact of material
dispersion, bit depth, and wavelength precision/jitter on the
all-optical transformation performance of broadband diffractive
networks. In addition to these, other factors may limit the per-
formance of broadband diffractive processors, including the
lateral and axial misalignments of diffractive layers, surface
reflections, and other imperfections introduced during the fab-
rication. To mitigate some of these practical issues, various ap-
proaches, such as high-precision lithography and antireflection
coatings can be utilized in the fabrication process of a diffractive

network. As demonstrated in our previous work,50,52,61 it is also
possible to mitigate the performance degradation resulting from
some of these experimental factors by incorporating them as
random errors into the physical forward model used during
the training process, which is referred to as “vaccination” of
the diffractive network.

The reported wavelength-multiplexed diffractive processor
represents a milestone in expanding the parallelism of diffrac-
tive all-optical computing, simultaneously covering a large
group of complex-valued linear transformations. Compared to
our previous work,70 where a monochromatic diffractive optical
network was integrated with polarization-sensitive elements to
achieve multiplexing of four independent linear transforma-
tions, the multiplexing factor ðNwÞ of a wavelength-multiplexed
diffractive network is significantly increased to more than 180,
and can further reach Nw ∼ 2000, revealing a major improve-
ment in the all-optical processing throughput. Moreover, the
physical architecture of this wavelength-multiplexed computing
framework is also relatively simple, since it does not rely on any
additional optical modulation elements, e.g., spectral filters; it
solely utilizes the different phase modulation values of the same
diffractive layers at different wavelengths of light, also being
compatible with different materials with various dispersion
properties (including flat dispersion, as illustrated in Fig. 7).
One could perhaps argue that, equivalent to a wavelength-multi-
plexed diffractive network that uses N trainable diffractive fea-
tures to compute Nw independent target linear transformations,
we could utilize a set of Nw separately optimized monochro-
matic diffractive networks, each assigned to perform one of
the Nw target linear transforms using N∕Nw diffractive features.
However, such a multipath design involving Nw different mono-
chromatic diffractive networks (one for each target transforma-
tion) would require bulky optical routing for fan-in/fan-out,
which would introduce additional insertion losses, noise, and
misalignment errors into the system, thus hurting the energy ef-
ficiency, performance, and compactness of the optical processor.
Considering the fact that we covered Nw > 180 in this work,
such an approach of using Nw separate monochromatic diffrac-
tive networks is not a feasible strategy that can compete with
a wavelength-multiplexed design. Furthermore, if additional
multiplexing schemes other than the wavelength multiplexing
reported here were to be used, such as temporal multiplexing,
switching between different diffractive networks, they would
also require the use of additional optoelectronic control ele-
ments, further increasing the hardware complexity of the sys-
tem, which would not be feasible for a large Nw.

It is worth further emphasizing that even if multiple sepa-
rately optimized monochromatic diffractive networks could
be trained to individually perform different target linear trans-
forms at different wavelengths, it is not possible to directly
combine the converged/optimized layers of these diffractive
networks to match the broadband operation of the wave-
length-multiplexed diffractive network presented here. Since
these monochromatic networks are individually trained using
only a single illumination wavelength, the optimized modula-
tion of each wavelength under broadband illumination would
produce destructive patterns to other wavelengths, and their
transformation accuracies would be collectively hampered.
This, once again, highlights the significance of our wavelength
multiplexing scheme: a wavelength-multiplexed diffractive
optical network can be realized through the engineering of the
surface profiles of dielectric diffractive layers with arbitrary
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Fig. 11 Experimental validation of a wavelength-multiplexed diffractive network with Nw ¼ 2
and Ni ¼ No ¼ 32. (a) Photograph of the experimental setup, including the schematic of the
THz setup. (b) The fabricated wavelength-multiplexed diffractive processor. (c) The learned
thickness profiles of the diffractive layers. (d) Photographs of the 3D-printed diffractive layers.
(e) Experimental results of the diffractive processor for the two wavelength channels λ1 ¼
0.667 mm and λ2 ¼ 0.698 mm using the fabricated diffractive layers, which reveal a good agree-
ment with their numerical counterparts and the ground truth. λm ¼ ðλ1 þ λ2Þ∕2 ¼ 0.6825 mm.
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dispersion properties, whereas these profiles should be designed
by simultaneously taking into account all the Nw wavelength
channels, with phase modulation values that are mutually
coupled to each other.

To the best of our knowledge, there has not been a demon-
stration of a design for the all-optical implementation of a com-
plex-valued, arbitrary linear transformation using metasurfaces
or metamaterials. In principle, having different diffractive
metaunits placed on the same substrate to perform different
transformations at different wavelengths could be attempted
as an alternative approach to what we presented in this paper.
However, such an approach would face severe challenges since
(1) at large spectral multiplexing factors (Nw ≫ 1) shown in this
work, the lateral period for each spectral metadesign will sub-
stantially increase per substrate, lowering the accuracy of each
transformation; (2) at each illumination wavelength, the other
metaunits designed for (assigned to) the other spectral compo-
nents, will also introduce “cross-talk fields” that will severely
contaminate the desired responses at each wavelength and can-
not be neglected since Nw ≫ 1; (3) the phase responses of the
spectrally encoded metaunits, in general, cover a small angular
range, leading to low numerical aperture (NA) solutions com-
pared to the diffractive solutions reported in this work, where
NA = 1 (in air); the low NA of metaunits fundamentally limits
the space-bandwidth product of each transformation channel;
and (4) if multiple layers of metasurfaces are used in a given
design, all of these aforementioned sources of errors associated
with spectral metaunits will accumulate and get amplified
through the subsequent field propagation in a cascaded manner,
causing severe degradations to the final output fields, compared
to the desired fields. Perhaps due to these significant challenges
outlined here, metasurface or metamaterial-based diffractive
designs have not yet been reported as a solution to perform
universal linear transformations—neither an arbitrary complex-
valued linear transformation nor a group of linear transforma-
tions through some form of multiplexing.

As we have shown in Sec. 2, a diffractive neuron number
of N ≥ 2NwNiNo is required for a wavelength-multiplexed
diffractive network to successfully implement Nw different
complex-valued linear transforms. Compared to the previous
complex-valued monochrome (Nw ¼ 1) diffractive designs,69

the additional factor of 2 in N results from the fact that the only
trainable degrees of freedom for a broadband wavelength-
multiplexed diffractive design are the thickness values of the
diffractive neurons, whereas the Nw different target transforma-
tions are all complex-valued. Stated differently, the resulting
modulation values of different wavelengths through each dif-
fractive neuron are mutually coupled through the dispersion of
the material and depend on the neuron thickness.

Finally, we would like to emphasize that this presented
framework can operate at various parts of the electromagnetic
spectrum, including the visible band, so that the set of wave-
length channels used to perform the transformation multiplexing
can match with the light source and/or the spectral signals emit-
ted from or reflected by the objects. In practice, this massively
parallel linear transformation capability can be utilized in an
optical processor to perform distinct statistical inference tasks
using different wavelength channels, bringing in additional
throughput and parallelism to optical computing. This wave-
length-multiplexed diffractive network design might also inspire
the development of new multicolor and hyperspectral machine-
vision systems, where all-optical information processing is

performed simultaneously based on both the spatial and spectral
features of the input objects. The resulting hyperspectral or mul-
tispectral diffractive output fields can enable new optical visual
processing systems that can identify or encode input objects
with unique spectral properties. As another possibility, novel
multispectral display systems can be created using these wave-
length-multiplexed diffractive output fields to reconstruct
spectroscopic images or light fields from compressed or dis-
torted input spectral signals.62 All these possibilities enabled
by wavelength-multiplexed diffractive optical processors can
inspire numerous applications in biomedical imaging, remote
sensing, analytical chemistry, material science, and many other
fields.

4 Appendix: Materials and Methods

4.1 Forward Model of the Broadband Diffractive Neural
Network

A wavelength-multiplexed diffractive network consists of
successive diffractive layers that collectively modulate the in-
coming broadband optical fields. In the forward model of
our numerical simulations, the diffractive layers are assumed
to be thin optical modulation elements, where the mth feature
on the kth layer at a spatial location ðxm; ym; zmÞ represents a
wavelength-dependent complex-valued transmission coefficient
tk given by

tkðxm; ym; zm; λÞ ¼ akðxm; ym; zm; λÞ expðjϕkðxm; ym; zm; λÞÞ;
(1)

where a and ϕ denote the amplitude and phase coefficients,
respectively. The diffractive layers are connected to each other
by free-space propagation, which is modeled through the
Rayleigh–Sommerfeld diffraction equation:22,46

fkmðx; y; zÞ ¼
z − zi
r2

�
1

2πr
þ 1

jλ

�
exp

�
j2πr
λ

�
; (2)

where fkmðx; y; z; λÞ is the complex-valued field on the mth pixel
of the kth layer at ðx; y; zÞ at a wavelength of λ, which can be
viewed as a secondary wave generated from the source at
ðxm; ym; zmÞ; and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xmÞ2 þ ðy − ymÞ2 þ ðz − zmÞ2

p
and j ¼ ffiffiffiffiffiffi−1p

. For the kth layer (k ≥ 1, assuming the input plane
is the 0th layer), the modulated optical field Ek at location
ðxm; ym; zmÞ is given by

Ekðxm; ym; zm; λÞ ¼ tkðxm; ym; zmÞ ·
X
n∈S

Ek−1ðxn; yn; zn; λÞ

· fk−1m ðxm; ym; zmÞ; (3)

where S denotes all the diffractive neurons on the previous
diffractive layer.

For the diffractive models used for numerical analyses, we
chose λm∕2 as the smallest sampling period for the simulation
of the complex optical fields and also used λm∕2 as the smallest
feature size of the diffractive layers. In the input and output
FOVs, a 4 × 4 binning is performed on the simulated optical
fields, resulting in a pixel size of 2λm for the input/output fields.
The axial distance (d) between the successive layers (including
the diffractive layers and the input/output planes) in our
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diffractive processor designs is empirically selected as
d ¼ 0.5Dlayer, where Dlayer represents the lateral size of each
diffractive layer.

The diffractive thickness value h of each neuron of a diffrac-
tive layer is composed of two parts hlearnable and hbase as follows:

h ¼ hlearnable þ hbase; (4)

where hlearnable denotes the learnable thickness parameters of
each diffractive feature and is confined between hmin ¼ 0 and
hmax ¼ 1.25λm for all the diffractive models used for numerical
analyses in this paper. When a modulation with q-bit depth is
applied to the diffractive model, hlearnable will be rounded to the
nearest number that corresponds to one of 2q different equally
spaced levels within the range of [0, hlearnable]. The additional
base thickness hbase is a constant, which is chosen as 0.25λm
to serve as substrate support for the diffractive neurons. To
achieve the constraint applied to hlearnable, an associated latent
trainable variable hv was defined using the following analytical
form:

hlearnable ¼
hmax

2
· ðsinðhvÞ þ 1Þ: (5)

Note that before the training starts hv values of all the
diffractive neurons were randomly initialized with a normal
distribution (a mean value of 0 and a standard deviation
of 1). Based on these definitions, the amplitude and phase
components of the complex transmittance of mth, i.e.,
akðxm; ym; zm; λÞ and ϕkðxm; ym; zm; λÞ, can be written as a
function of the thickness of each neuron hm and the incident
wavelength λ:

akðxm; ym; zm; λÞ ¼ exp

�
− 2πκðλÞhkm

λ

�
; (6)

ϕkðxm; ym; zm; λÞ ¼ ðnðλÞ − nairÞ
2πhkm
λ

; (7)

where the wavelength-dependent parameters nðλÞ and κðλÞ
are the refractive index and the extinction coefficient of the
diffractive layer material corresponding to the real and imagi-
nary parts of the complex-valued refractive index ñðλÞ, i.e.,
ñðλÞ ¼ nðλÞ þ jκðλÞ.66 In the numerical analyses of this work,
we considered three different materials to form the diffractive
layers of a broadband diffractive processor, including a lossy
polymer, a lossless dielectric, and a hypothetical lossless
dispersion-free material. Among these, the lossy polymer
material represents a UV-curable 3D printing material
(VeroBlackPlus RGD875, Stratasys Ltd.), which was used
in our previous work52,66,67 for 3D printing of diffractive net-
works. The lossless dielectric material, used for the diffractive
models operating at the visible band, represents N-BK7 glass
(Schott), ignoring the negligible absorption through thin layers.
The dispersion-free material, on the other hand, assumed a
lossless material with its refractive index nðλÞ having a flat
distribution with respect to the wavelength range of interest,
i.e., nðλÞ ≈ 1.72. The final nðλÞ and κðλÞ curves of different
materials that were used for training the diffractive models re-
ported in this paper are shown in Fig. S5 in the Supplementary
Material.

4.2 Preparation of the Linear Transformation Data Sets

In this paper, the input and output FOVs of the diffractive
networks are assumed to have the same size, which is set as
8 × 8, 5 × 5, or 3 × 3 pixels based on the assigned linear
transformation tasks, i.e., iw; ow ∈ C8×8, C5×5, or C3×3

(w ∈ f1; 2;…; Nwg). Accordingly, the size of the target
complex-valued transformation matrices Aw is equal to
64 × 64, 25 × 25, or 9 × 9, respectively, i.e., Aw ∈ C64×64

(w ∈ f1; 2;…; 32g), Aw ∈ C25×25 ðw ∈ f1; 2;…; 184gÞ, or
Aw ∈ C9×9 (w ∈ f1; 2g). For arbitrary linear transformations,
the amplitude and phase components of all these target matrices
Aw were generated with a uniform (U) distribution of U½0; 1�
and U½0; 2π�, respectively, using the pseudorandom number
generation function random.uniform() built-in NumPy. For
the arbitrarily selected permutation transformations, all the
target matrices Aw (also denoted as Pw) were generated by per-
muting an identity matrix of the same size as Pw using the pseu-
dorandom matrix permutation function random.permutation()
built-in NumPy. Different random seeds were used to generate
these transformation matrices to ensure they were unique. For
training a broadband diffractive network with Nw wavelength
channels, the amplitude and phase components of the input
fields iw (w ∈ f1; 2;…; Nwg) were randomly generated with
a uniform (U) distribution of U½0; 1� and U½0; 2π�, respectively.
The ground-truth (target) fields ow (w ∈ f1; 2;…; Nwg)
were generated by calculating ow ¼ Awiw. For each Aw
(w ∈ f1; 2;…; Nwg), we generated a total of 70,000 input/out-
put complex optical fields to form a data set, which was then
divided into three parts: training, validation, and testing, each
containing 55,000, 5000, and 10,000 complex-valued optical
field pairs, respectively.

4.3 Training Loss Function

For each wavelength channel, the normalizedMSE loss function
is defined as

LMSE;w ¼ E

�
1

No

XNo

n¼1

jôw½n� − ô0w½n�j2
�

¼ E

�
1

No

XNo

n¼1

jσwow½n� − σ0wo0w½n�j2
�
; (8)

where E½·� denotes the average across the current batch, w stands
for the wth wavelength channel that is being accessed, and ½n�
indicates the nth element of the vector. σw and σ0w are the coef-
ficients used to normalize the energy of the ground-truth (target)
field ow and the diffractive network output field o0w, respectively,
which are given by

σw ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNo
n¼1 jow½n�j2

q ; (9)

σ0w ¼
PNo

n¼1 σwow½n�o0�w ½n�PNo
n¼1 jo0w½n�j2

: (10)

During the training of each broadband diffractive network,
all the wavelength channels are simultaneously simulated,
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and the training data are fed into the channels at the same time.
The wavelength-multiplexed diffractive network is trained
based on the loss averaged across different wavelength chan-
nels. The total loss function L that we used can be written
as

L ¼ 1

Nw

XNw

w¼1

αwLMSE;w; (11)

where αw is the adaptive spectral weight coefficient applied to
the loss for the wth wavelength channel, which was used to bal-
ance the performance achieved by different wavelength chan-
nels during the optimization process. The initial values of αw
for all the wavelength channels are set as 1. After the optimi-
zation begins, αw is adaptively updated after each training step
using the following equation:

αw ← maxð0.1 × ðLMSE;w − LMSE;wref
Þ þ αw; 0Þ; (12)

whereLMSE;wref
represents the MSE loss of the wavelength chan-

nel that is chosen to be a reference to measure the difference in
the loss of the other channels. This also means that αw for the
wavelength channel selected as the reference remains un-
changed at 1. For the trained broadband diffractive models
presented in this paper, we chose the middle channel as the
reference wavelength channel, i.e., wref ¼ Nw∕2. According
to this approach, for a wavelength channel w that is not a refer-
ence channel, when the loss of the channel is small compared to
that of the reference channel, αw will automatically decrease to
reduce the weight of the corresponding channel. Conversely,
when the loss of a specific wavelength channel is large com-
pared to that of the reference channel, αw will automatically
grow to increase the weight of the channel and thus enhance
the subsequent penalty on the corresponding channel per-
formance.

In order to increase the output diffraction efficiencies of the
diffractive networks, we incorporated an additional efficiency
penalty term to the loss function of Eq. (11):

L ¼ 1

Nw

XNw

w¼1

ðαwLMSE;w þ βLeff;wÞ; (13)

where Leff;w represents the diffraction efficiency penalty loss
applied to the wth wavelength channel, and β represents its
weight, empirically set as 104. Leff;w is defined as

Leff;w ¼
�
ηth − ηw; if ηth ≥ ηw
0; if ηth < ηw

; (14)

where ηw represents the mean output diffraction efficiency for
the wth wavelength channel of the wavelength-multiplexed dif-
fractive network, and ηth refers to a predetermined penalization
threshold, which was taken as 3 × 10−5 (for diffractive models
using the lossy polymer materials) or 3 × 10−4 (for the other
diffractive models using lossless dielectric or dispersion-free
materials). ηw is defined as

ηw ¼ E

"PNo
n¼1 jo0w½n�j2PNi
n¼1 jiw½n�j2

#
: (15)

4.4 Performance Metrics Used for the Quantification of
the All-Optical Transformation Errors

To quantitatively evaluate the transformation results of the
wavelength-multiplexed diffractive networks, four different
performance metrics were calculated per wavelength channel of
the diffractive designs using the blind testing data set: (1) the
normalized transformation MSE (MSETransformation), (2) the
cosine similarity (CosSim) between the all-optical transforms
and the target transforms, (3) the normalized MSE between
the diffractive network output fields and their ground truth
(MSEOutput), and (4) the output diffraction efficiency [Eq. (15)].
The transformation error for the wth wavelength channel of the
wavelength-multiplexed diffractive network MSETransformation;w
is defined as

MSETransformation;w ¼ 1

NiNo

XNiNo

n¼1

jaw½n� −mwa0w½n�j2

¼ 1

NiNo

XNiNo

n¼1

jaw½n� − â0w½n�j2; (16)

where aw is the vectorized version of the ground-truth (target)
transformation matrix assigned to the wth wavelength channel
Aw, i.e., aw ¼ vecðAwÞ. a0w is the vectorized version of A0

w,
which is the all-optical transformation matrix performed by
the trained diffractive network. mw is a scalar coefficient used
to eliminate the effect of diffraction efficiency-related scaling
mismatch between Aw and A0

w, i.e.,

mw ¼
P

NiNo
n¼1

aw½n�a0�w ½n�P
NiNo
n¼1

ja0w½n�j2
: (17)

The cosine similarity between the all-optical diffractive trans-
form and its target (ground truth) for the wth wavelength channel
CosSimw is defined as

CosSimw ¼ jaHw â0wjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
NiNo
n¼1

jaw½n�j2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

NiNo
n¼1

jâ0w½n�j2
p : (18)

The normalized MSE between the diffractive network out-
puts and their ground truth for the wth wavelength channel
MSEOutput;w is defined using the same formula as in Eq. (8),
except that E½·� is calculated across the entire testing set.

4.5 Training-Related Details

All the diffractive optical networks used in this work were
trained using PyTorch (v1.11.0, Meta Platforms Inc.). We se-
lected AdamW optimizer76,77 for training all the models, and
its parameters were taken as the default values and kept identical
in each model. The batch size was set as 8. The learning rate,
starting from an initial value of 0.001, was set to decay at a rate
of 0.5 every 10 epochs, respectively. The training of the diffrac-
tive network models was performed with 50 epochs. The best
models were selected based on the MSE loss calculated on the
validation data set. For the training of our diffractive models,
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we used a workstation with a GeForce RTX 3090 graphical
processing unit (Nvidia Inc.) and Intel® Core™ i9-12900F cen-
tral processing unit (Intel Inc.) and 64 GB of RAM, running
Windows 11 operating system (Microsoft Inc.). The typical
time required for training a wavelength-multiplexed diffractive
network model with, e.g., Nw ¼ 128 and N ¼ 1.5NwNiNo
is ∼50 h.

4.6 Experimental Terahertz Setup

The diffractive layers used in our experiments were fabricated
using a 3D printer (PR110, CADworks3D). The input test ob-
jects and holders were also 3D-printed (Objet30 Pro, Stratasys).
After the printing process, the input objects were coated with
aluminum foil to define the light-blocking areas, leaving open-
ings at specific positions to define the transmitted pixels of the
input patterns. The designed holder was used to assemble the
diffractive layers and objects to mechanically maintain their
relative spatial positions in line with our numerical design.

To test our fabricated wavelength-multiplexed diffractive
network design, we adopted a THz continuous-wave scanning
system, whose schematic is presented in Fig. 11(a). A WR2.2
modular amplifier/multiplier chain (AMC) followed by a com-
patible diagonal horn antenna (Virginia Diode Inc.) is used as
the THz source. Each time, a 10-dBm RF input signal was set at
11.944 or 12.500 GHz (fRF1) at the input of AMC and multi-
plied 36 times to generate output radiation at 450 or 430 GHz,
respectively, which corresponds to the illumination wavelengths
λ1 ¼ 0.667 mm and λ2 ¼ 0.698 mm used for the two wave-
length channels. A 1-kHz square wave was also generated to
modulate the AMC output for lock-in detection. By placing
the wavelength-multiplexed diffractive network 600 mm away
from the exit aperture of the THz source, an approximately uni-
form plane wave was created, impinging on the input FOVof the
diffractive network. The intensity distribution within the output
FOV of the diffractive network was scanned at a step size of
2 mm by a single-pixel mixer/AMC (Virginia Diode Inc.) de-
tector, which was mounted on an XY positioning stage formed
by combining two linearly motorized stages (Thorlabs
NRT100). For illumination at λ1 ¼ 0.667 mm or λ2 ¼
0.698 mm, a 10-dBm sinusoidal signal was also generated at
11.917 or 12.472 GHz (fRF2), respectively, as a local oscillator
and sent to the detector to downconvert the output signal to
1 GHz. After being amplified by a low-noise amplifier
(Mini-Circuits ZRL-1150-LN+) with a gain of 80 dBm, the
downconverted signal was filtered by a 1-GHz (�10 MHz)
bandpass filter (KL Electronics 3C40-1000/T10-O/O) and
attenuated by a tunable attenuator (HP 8495B) for linear cali-
bration. This final signal was then measured by a low-noise
power detector (Mini-Circuits ZX47-60), whose output voltage
was read by a lock-in amplifier (Stanford Research SR830) us-
ing the 1-kHz square wave as the reference signal and calibrated
to a linear scale. In our postprocessing, cropping and pixel bin-
ning were applied to each measurement of the intensity field to
match the pixel size and position of the output FOV used in the
design phase, resulting in the output measurement images
shown in Fig. 11(e).
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