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Abstract. The daytime sky has recently been demonstrated as a useful calibration tool for deriving polarization
cross-talk properties of large astronomical telescopes. The Daniel K. Inouye Solar Telescope and other large
telescopes under construction can benefit from precise polarimetric calibration of large mirrors. Several atmos-
pheric phenomena and instrumental errors potentially limit the technique’s accuracy. At the 3.67-m AEOS
telescope on Haleakala, we performed a large observing campaign with the HiVIS spectropolarimeter to identify
limitations and develop algorithms for extracting consistent calibrations. Effective sampling of the telescope
optical configurations and filtering of data for several derived parameters provide robustness to the derived
Mueller matrix calibrations. Second-order scattering models of the sky show that this method is relatively
insensitive to multiple-scattering in the sky, provided calibration observations are done in regions of high
polarization degree. The technique is also insensitive to assumptions about telescope-induced polarization,
provided the mirror coatings are highly reflective. Zemax-derived polarization models show agreement
between the functional dependence of polarization predictions and the corresponding on-sky calibrations.
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1 Introduction
Polarization calibration of large telescopes and modern instru-
ments is often limited by the availability of suitable sources for
calibration. Several calibration techniques exist using stars or
the sun, internal optical systems, or a priori knowledge of
the expected signals, but each technique has limitations. For alti-
tude–azimuth telescopes, coudé or Nasmyth instruments, or
telescopes with off-axis primaries, the polarization calibration
usually requires bright, highly polarized sources available over
a wide range of wavelengths, altitude–azimuth pointings. In
night-time astronomy, polarized standard stars are commonly
used, but they provide very limited altitude–azimuth coverage are
faint, and have low polarization amplitudes (typically <5%1–3).
Unpolarized standard stars also exist, but they are also faint
and provide limited altitude–azimuth coverage. Solar telescopes
can use solardisk-center as a bright, zero-polarization target,
provided there is no magnetic field activity. Solar observations
often lack bright, significantly polarized targets of known prop-
erties. Smaller telescopes can use fixed polarizing filters placed
over the telescope aperture to provide known input states that
are detected and yield terms of the Mueller matrix as for the
Dunn Solar Telescope.4–8 Symmetries of spectropolarimetric
signatures from the Zeeman effect have been used in solar phys-
ics to determine terms in the Mueller matrix.9,10 Many studies
have either measured and calibrated telescopes, measured mirror
properties, or attempted to design instruments with minimal
polarimetric defects (cf. Refs. 11–17). Space-based polarimetric

instruments such as Hinode also undergo detailed polarization
calibration and characterization.18,19

Many telescopes use calibration optics such as large polar-
izers, polarizer mosaic masks, polarization state generators, or
optical injection systems at locations in the beam after the pri-
mary or secondary mirror. For some systems, a major limitation
is the ability to calibrate the primary mirror and optics upstream
of the calibration system. These systems include telescopes with
large primary mirrors, systems without accessible intermediate
foci, or many-mirror systems without convenient locations for
calibration optics. System calibrations are subject to model
degeneracies, coherent polarization effects in the point spread
function, and other complex issues such as fringes or seeing-
induced artifacts.4,5,20–22 Modern instrumentation is often behind
adaptive optics systems requiring detailed consideration of
active performance on polarization artifacts in addition to
deconvolution techniques and error budgeting.23–26 Modeling
telescope polarization is typically done either with simple
single-ray traces using assumed mirror refractive indices or
with ray-tracing programs such as Zemax.11,24,27

Every major observatory addresses a diversity of scientific
cases. Often, cross-talk from the optics limits the polarization
calibration to levels of 0.1% to >1% in polarization orientation
(e.g., ESPaDOnS at CFHT, LRISp at Keck, and SPINOR at
DST4,28–30). Artifacts from the instruments limit the absolute
degree of polarization (DoP) measurements from backgrounds
or zero-point offsets. Hinode and the Daniel K Inouye Solar
Telescope (DKIST) project outline attempts to create error
budgets, calling for correction of these artifacts to small frac-
tions of a percent. The calibration techniques presented here
aim to calibrate the cross-talk elements of the Mueller matrix
to levels of roughly 1% of the element amplitudes, consistent
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with internal instrument errors. We also show that the limitation
of the method is not the model for the polarization patterns of
the sky but the other instrumental and observational issues.

The High-resolution Visible and Infrared Spectrograph
(HiVIS) is a coudé instrument for the 3.67-m AEOS telescope
on Haleakala, Hawaii. The visible arm of HiVIS has a spectro-
polarimeter, which we recently upgraded to include charge
shuffling synchronized with polarization modulation using
tunable nematic liquid crystals.31 In Ref. 31, hereafter called
H15, we outline the coudé path of the AEOS telescope and
details of the HiVIS polarimeter.

The DKIST is a next-generation solar telescope with a 4-m-
diameter off-axis primary mirror and a many-mirror folded
coudé path.32–34 This altitude–azimuth system uses seven
mirrors to feed light to the coudé lab.32,35,36 Its stated scientific
goals require very stringent polarization calibration. Operations
involve four polarimetric instruments spanning the 380- to
5000-nm wavelength range with changing configuration and
simultaneous operation of three polarimetric instruments
covering 380 to 1800 nm.6,35–37 Complex modulation and
calibration strategies are required for such a multi-instrument
system.35,36,38–41 With a large off-axis primary mirror, calibration
of DKIST instruments requires external (solar, sky, and stellar)
sources. The planned 4-m European Solar Telescope, though
on-axis, will also require similar calibration considerations.42–45

1.1 Polarization

The following discussion of polarization formalism closely fol-
lows Refs. 46 and 47. In the Stokes formalism, the polarization
state of light is denoted as a four-vector: Si ¼ ½I; Q;U; V�T .
In this formalism, I represents the total intensity, Q and U
are the linearly polarized intensities along polarization position
angles 0 deg and 45 deg in the plane perpendicular to the
light beam, respectively, and V is the right-handed circularly
polarized intensity. The intensity-normalized Stokes parameters
are usually denoted as ½1; q; u; v�T ¼ ½I; Q;U; V�T∕I. The DoP
is the fraction of polarized light in the beam: DoP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þU2þV2
p

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ u2 þ v2

p
. For this work, we adopt a

term angle of polarization (AoP) from the references on daytime
sky polarimetry, which defines the angle of linear polarization
(AoP) as ATANðQ∕UÞ∕2. The Mueller matrix is a 4 × 4 set
of transfer coefficients that describes how an optic changes
the input Stokes vector (Siinput ) to the output Stokes vector
(Sioutput ): Sioutput ¼ MijSiinput . If the Mueller matrix for a system
is known, then one inverts the matrix to recover the input
Stokes vector. One can represent the individual Mueller matrix
terms as describing how one incident polarization state transfers
to another. In this paper, we will use the notation
EQ-TARGET;temp:intralink-;e001;63;205

Mij ¼

0
BBB@

II QI UI VI

IQ QQ UQ VQ

IU QU UU VU

IV QV UV VV

1
CCCA: (1)

1.2 Daytime Sky as a Calibration Target

The daytime sky is a bright, highly linearly polarized source that
illuminates the telescope optics similar to distant targets (sun,
stars, satellites, and planets) starting with the primary mirror.

A single-scattering Rayleigh calculation is often adequate to
describe the sky polarization to varying precision levels and
is introduced in great detail in several text books (e.g.,
Refs. 48 and 49).

There are many atmospheric and geometric considerations
that change the skylight polarization pattern. The linear polari-
zation amplitude and angle can depend on the solar elevation,
atmospheric aerosol content, aerosol vertical distribution, aero-
sol scattering phase function, wavelength of the observation,
and secondary sources of illumination such as reflections off
oceans, clouds, or multiple scattering.50–66 Anisotropic scattered
sunlight from reflections off land or water can be highly polar-
ized and temporally variable.67–72 Aerosol particle optical prop-
erties and vertical distributions also vary.58,73–82 The polarization
can change across atmospheric absorption bands or can be
influenced by other scattering mechanisms.83–87 Deviations
from a single-scattering Rayleigh model grow as the aerosol,
cloud, ground, or sea-surface scattering sources affect the tele-
scope line-of-sight. Clear, cloudless, low-aerosol conditions
should yield high linear polarization amplitudes and small
deviations in the polarization direction from a Rayleigh model.
Observations generally support this conclusion.88–96 Conditions
at twilight with low solar elevations can present some spectral
differences.79–82,97

An all-sky imaging polarimeter deployed on Haleakala
also shows that a single-scattering sky model is a reasonable
approximation for DKIST and AEOS observatories.95,96 The
preliminary results from this instrument showed that the AoP
agreed with single-scattering models to better than 1 deg in
regions of the sky more than 20% polarized. We will show
later how to filter data sets based on several measures of the
daytime sky properties to ensure that second-order effects are
minimized. The daytime sky DoP was much more variable,
but as shown in later sections, the DoP variability has minimal
impact on our calibration method. More detailed models include
multiple scattering and aerosol scattering and are also available
using industry standard atmospheric radiative transfer software
such as MODTRAN.98,99 However, the recent studies on
Haleakala applied measurements and modeling techniques to the
DKIST site and found that the AoP was very well described by
the single-scattering model for regions of the sky with DoP
greater than 15%.95,96 The behavior of the DoP was much more
complex and did not consistently match the single-scattering
approximation. The technique we developed uses only the AoP.

1.3 Single-Scattering Sky Polarization Model

Sky polarization modeling is well represented by simple single-
scattering models with a few free parameters. The simplest
Rayleigh sky model includes single scattering with polarization
perpendicular to the scattering plane. A single scale factor for
the maximum degree of linear polarization (δmax) scales the
polarization pattern across the sky.

The all-sky model requires knowing the solar location and
the scale factor (δmax) to compute the DoP and the AoP pro-
jected onto the sky. The geometry of the Rayleigh sky model
is shown in Fig. 1. The geometrical parameters are the observ-
er’s location (latitude, longitude, and elevation) and the time.
The solar location and relevant angles from the telescope
pointing are computed from the spherical geometry in Fig. 1.
The maximum DoP (δmax) in this model occurs at a scattering
angle (γ) of 90 deg. The Rayleigh sky model predicts the DoP
(δ) at any telescope pointing (azimuth and elevation) as
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EQ-TARGET;temp:intralink-;e002;63;452δ ¼ δmax sin
2γ

1þ cos2γ
; (2)

and the spherical geometry is computed as cosðγÞ ¼
sinðθsÞ sinðθÞ cosðψÞ þ cosðθsÞ cosðθÞ, where γ is the angular
distance between the telescope pointing and the sun, θs is the
solar zenith angle, θ is the angular distance between the
telescope pointing and the zenith, and ψ is the azimuthal
angle between the solar direction and the telescope pointing.
The geometry comes from the law of cosines with γ, θs, and
θ as the angular distances and ψ representing the interior
angle. The spherical triangle formed by the solar location,
zenith, and telescope pointing can be seen in Fig. 1. A detailed
example of this single-scattering model can be seen in Fig. 2,
which is computed on January 27th 2010. This figure shows
several model parameters either in altitude–azimuth projections
or in orthographic projects. The single-scattering model has
the highest DoP in a band of 90-deg scattering angle.

1.4 Solving for Telescope Mueller Matrix Elements

We model the 3 × 3 cross-talk elements (quv to quv terms) of
the Mueller matrix as a rotation matrix.100 This method makes
the assumption that a telescope with weakly polarizing optics
can have a Mueller matrix that is well represented by a rotation
matrix. We find cross-talk of 100%, but the induced polarization
and depolarization terms are less than 5%. A rotation matrix has
been a good fit to our past data, is predicted by our Zemax mod-
eling, and is easily described with three Euler angles to produce
the nine terms of the cross-talk matrix.31,101 We also perform
a sensitivity analysis in later sections to show that this approxi-
mation is reasonable. We find in the appendices that we can
neglect the first row and column of the Mueller matrix as the
correction to the inner quv to quv terms is second-order in
these neglected terms.

For our procedure, all Stokes vectors are scaled to unit length
(projected onto the Poincaré sphere) by dividing the Stokes
vector by the measured DoP. This removes the residual effects
from changes in the sky DoP, telescope-induced polarization,
and depolarization. Since we ignore the induced polarization
and depolarization, we consider only the 3 × 3 cross-talk ele-
ments as representing the telescope Mueller matrix. We denote
the three Euler angles as (α; β; γ) and use a short-hand notation
where cosðγÞ is shortened to cγ . We specify the rotation matrix
(Rij) using the ZXZ convention for Euler angles as
EQ-TARGET;temp:intralink-;e003;326;642

Rij ¼
0
@

cγ sγ 0

−sγ cγ 0

0 0 1

1
A
0
@

1 0 0

0 cβ sβ
0 −sβ cβ

1
A
0
@

cα sα 0

−sα cα 0

0 0 1

1
A

¼

0
B@

cαcγ − sαcβsγ sαcγ þ cαcβsγ sβsγ
−cαsγ − sαcβcγ −sαsγ þ cαcβcγ sβcγ

sαsβ −cαsβ cβ

1
CA: (3)

With this definition for the rotation matrix, we solve the Euler
angles assuming a linearly polarized daytime sky scaled to
100% DoP as calibration input. If we denote the measured
Stokes parameters, Si, as (qm; um; vm) with i ¼ 1;2; 3 and the
input sky Stokes parameters, Rj, as (qr; ur; 0), then the 3 × 3

quv Mueller matrix elements at each wavelength are
EQ-TARGET;temp:intralink-;e004;326;465

Si ¼

0
B@

qm
um
vm

1
CA¼MijRj ¼

0
B@

QQ UQ VQ

QU UU VU

QV UV VV

1
CA
0
B@

qr
ur
0

1
CA: (4)

We have no V input from the daytime sky to constrain the VQ,
VU, and VV terms. Nevertheless, two measurements at different
input polarization angles are sufficient to fully specify the
rotation matrix. Thus, we use the fact that the sky polarization
changes orientation with time and take measurements at iden-
tical telescope pointings separated by enough time for the solar
sky illumination to change. A set of observations with a chang-
ing input AoP yields an overconstrained solvable problem for
all six linear polarization terms in the Mueller matrix.

When using this rotation matrix approximation for the tele-
scope Mueller matrix, the Rayleigh sky input Stokes parameters
multiply each term of the rotation matrix to give a system of
equations for the three Euler angles (α, β, γ). This system of
equations can be solved using a normal nonlinear least-squares
minimization by searching the (α, β, γ) space for minima in
squared error. This direct solution of this set of equations
using standard minimization routines is subject to several ambi-
guities that affect convergence using standard minimization rou-
tines. The details of our methods for deriving Euler angles and
an example of how one could plan sky calibration observations
are outlined in the Appendix of Ref. 100.

Equating Mueller matrix elements to rotation matrix ele-
ments, we can write the system of equations for the three
Euler angles. This system of equations can be solved using a
normal nonlinear least-squares minimization by searching the
(α, β, γ) space for minima in squared error. With the measured
Stokes vector (Si), i ¼ ð1;2; 3Þ, the Rayleigh sky input vector
(Rj), j ¼ ð1;2Þ, and a rotation matrix (Rij), we define the
error (ϵ) as ϵ2ðα; β; γÞ ¼ P

3
i¼1

P
2
j¼1 ½Si − RiRijðα; β; γÞ�2. For

n measurements, this gives us 3 × n terms. This solution is

Fig. 1 The celestial triangle representing the geometry for the sky
polarization computations at any telescope pointing. γ is the angular
distance between the telescope pointing and the sun. θs is the solar
angular distance from the zenith. θ is the angular distance between
the telescope pointing and the zenith. ϕ is the angle between the
zenith direction and the solar direction at the telescope pointing.
The angle ψ is the difference in azimuth angle between the telescope
pointing and the solar direction. The input qu components are derived
as sin and cos of ψ , respectively. The law of cosines is used to solve
for any angles needed to compute DoP and position AoP.
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easily solvable in principle but has ambiguities. An alternative
method for the direct least-squares solution for Euler angles is
done in two steps. First, we directly solve a system of equations
for the Mueller matrix elements that are not subject to rotational
ambiguity. With the estimated Mueller matrix elements in hand,
we can then perform a rotation matrix fit to the derived Mueller
matrix element estimates. This two-step process allows us to use
accurate starting values to speed up the minimization process
and to resolve Euler angle ambiguities. When deriving the
Mueller matrix elements of the telescope, one must take care
that the actual derived matrices are physical. For instance,
there are various matrix properties and quantities one can derive
to test the physicality of the matrix.102–105 Noise and systematic
errors might give overpolarizing or unphysical Mueller matrices.
By fitting a rotation matrix, we avoid unphysical matrices.

The normal solution for Mueller matrix elements can be
computed via the normal least-squares method. We can

rearrange the time-varying Rayleigh sky inputs to (Rij) for i in-
dependent observations and j input Stokes parameters. The
measured Stokes parameters (Si) become individual column
vectors. The unknown Mueller matrix elements are arranged
as a column vector by output Stokes parameter (Mj). If we
write measured Stokes parameters as (qmi

; umi
; vmi

) and the
Rayleigh input Stokes parameters as (qri ; uri ), we can explicitly
write a set of equations for two Mueller matrix elements

EQ-TARGET;temp:intralink-;e005;326;160

Si ¼

0
B@

qm1

qm2

qm3

1
CA ¼ RijMj ¼

0
B@

qr1 ur1
qr2 ur2
qr3 ur3

1
CA
�
QQ

UQ

�
: (5)

We have three such equations for each set of Mueller matrix
elements sampled by sky measurements. We can express
the residual error (ϵi) for each incident Stokes parameter (Si)

Fig. 2 Various Rayleigh sky model parameters computed in a range of projections for mid-morning on
January 27th, 2010, on Haleakala when the sun was at an elevation of 50.5 deg and an azimuth of
172 deg. The single-scattering model was scaled to a maximum DoP of 100% (δmax). (a) The model
DoP with white at 100% and black as 0% for all altitudes and azimuths plotted on a Cartesian rectangular
grid. (b) The same DoP model data but in an orthographic projection with North up and East left. (a, b)
show equivalent DoP data just with differing projections. (d) The scattering angle in an orthographic
projects. This scattering angle shows the input linear polarization angle in the reference frame of the
telescope, which always has the +elevation axis point. (e, f) q and u in an orthographic projection
where white is þ1 and black is −1. The coordinate system for qu was chosen to be þ1 in the
þaltitude direction of an altitude–azimuth system. This system has a singularity at the zenith where
the telescope optics can degenerately point to the zenith with any azimuth. The þaltitude ¼ þq system
is referenced to the optical train through the orientation of the primary mirror mount against the sky.
(g, h, i) Properties of the sky polarization model on the horizon. (g) The DoP with peaks in the East and
West. The scattering angle in (h) shows sign changes at the solar azimuth of 172 deg. (i) shows q as the
solid black line and u as the dashed line. Stokes u changes sign at the solar azimuth of 172 deg.
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with an implied sum over j as ϵi ¼ Si − RijMj. The normal sol-
ution of an overspecified system of equations is easily derived in
a least-squares sense using matrix notation. With the total error
E as the sum of all residuals for m independent observations,
we get E ¼ P

m
i¼1 ϵ

2
i . We solve the least-squares system for

the unknown Mueller matrix element (Mj) by minimizing the
error with respect to each equation. The partial derivative for
ϵi with respect to Mj is just the sky input elements Rij.
Taking the partial with respect to each input Stokes parameter,
we get

EQ-TARGET;temp:intralink-;e006;63;639

∂E
∂Mj

¼ 2
X
i

ϵi
∂ϵi
∂Mj

¼ −2
X
i

Rij

�
Si −

X
k

RikMk

�
¼ 0:

(6)

We have inserted a dummy sum over the index k. Multiplying
out the terms and rearranging gives us the normal equations:P

i

P
k RijRikMk ¼

P
iRijSi. This is written in matrix nota-

tion, which is the familiar solution of a system of equations
via the normal method M ¼ RTS

RTR.
This solution is stable provided a diverse range of input states

are observed to give a well-conditioned inversion. The noise
properties and inversion characteristics of this equation can
be calculated in advance of observations and optimized. We
can write the matrix A with an implied sum over i observations
for each term. As an example for a single element, if we com-
pute the inverse of A and multiply out A−1 for the QQ term, we
can write

EQ-TARGET;temp:intralink-;e007;63;427

A ¼ RTR ¼
�
qriqri qriuri
qriuri uriuri

�
;

A11 ¼ QQ ¼ ðqriqmi
ÞðuriuriÞ − ðuriqmi

ÞðqriuriÞ
ðqriqriÞðuriuriÞ − ðqriuriÞðqriuriÞ

: (7)

The solution to the equations for the three sets of Mueller
matrix elements is outlined in the Appendix of Ref. 100.
In this manner, we can easily implement the usual matrix
formalism with a time-series of daytime sky observations to
measure six Mueller matrix elements.

2 Single-Scattering Model Limitations
The assumption of a single-scattering model for computing the
daytime sky polarization is incorrect under some circumstances.
Multiple scattering, contributions from multiple light sources
(upwelling, cloud reflections, and ocean reflections) all compli-
cate the computation of the DoP and associated linear polariza-
tion angle. In this section, we outline a second-order scattering
model and show how this model can be used to choose calibra-
tion observations to avoid such issues. By planning observations
in regions of the sky where multiple scattering issues are mini-
mized, this calibration technique can be efficiently used with
a simple single-scattering model.

2.1 Multiple-Scattering Models

We show here that the common two-component multiple-
scattering model imparts minimal changes to the AoP in wide
regions of the sky. Several additions to the single-scattering
model are possible but behave similarly. Along any line of sight

in the sky, there are contributions from the single-scattered sun-
light along with multiply scattered light off a range of
airborne- and ground-based sources as well as extinction.
Contributions fromMie scattering of water droplets, ice crystals,
or large aerosols modify the models in complex ways. As an
example of the variations between the single-scattered Rayleigh
model and a simple multiple-scattering model, we follow the
mathematical formalism of Ref. 66 to derive general properties
of the polarization imprinted from the most common multiple
scattering source.

In their notation, they use ζ to denote the location of a point
on a stereographic projection of the sky. In Cartesian geometry,
ζ ¼ xþ iy. In polar coordinates, ζ ¼ r eiϕ. In Ref. 66, they used
the term w to represent the polarization pattern across the sky.
By breaking the exponential equation into an amplitude term jwj
and a complex orientation term γðζÞ, they represent the
stereographic projection for the sky polarization pattern as
wðζÞ ¼ jwje2iγðζÞ. For the single-scattering case, this simple
relation behaves as ζ2 and can be scaled to an amplitude of
1 and written in polar coordinates (r;ϕ) as wðζÞ ∼ ζ2 ¼
r2e2iðϕ−

π
2Þ.

To add multiple scattering to this equation, we must consider
the shift of the zero polarization points away from the solar and
antisolar locations. These zero points are Brewster and Babinet
points near the sun as well as the Arago and second Brewster
point near the antisolar location. Several empirical results show
that the singularities are found above and below the sun along
the solar meridian. This generally follows from the empirical
result that double scattering is the dominant contribution to
multiple scattering in the typical locations surveyed. This dou-
ble-scattering contribution is generally polarized in the vertical
direction as it represents the light scattered into the line of sight
from the integrated skylight incident on all points along the line
of sight. When the sun is low in the horizon, the low DoP
regions of the sky are also low on the horizon. This double-
scattering contribution is of the same amplitude as the single-
scattered light when the single-scattered light is weak and
horizontally polarized, which occurs above and below the sun
at low solar elevations during sunrise and sunset.

The simplest perturbation to the model is to add a constant
that represents a small additional polarization of assumed con-
stant orientation, denoted as A. Following Ref. 66, the zero
polarization singularities fall at the locations of ζ ¼ �iA,
which corresponds to a Cartesian y value of �A. To make
the singularities at the antisun location, the equation was gen-
eralized to wðζÞ ∼ ðζ2 þ A2Þðζ2 þ 1

A2Þ.
A simple example of this two-term scattering model is shown

in Fig. 3. The stereographic projection convention has been
used. In this case, we put the sun on the horizontal axis to
match the North = up convention of Fig. 2. However, in this
formalism, the Stokes qu parameters are not referenced to
the altitude–azimuth frame and there is no singularity at the
zenith. An angular splitting of 27 deg was chosen, and the sun
is at an elevation of 89 deg. This solar elevation puts the sun in
the center of the image with the horizon projected on the edge
of the circle.

The calibration method we have pursued is based on the
assumption that the AoP of the sky polarization pattern is known
as a modeled input parameter with a high degree of accuracy.
Variations between the single Rayleigh scattering model and
the real input Stokes vector can cause errors in our calibration
methodology.
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Figure 4 shows the AoP variations between the simple sin-
gle-scattering model and the multiple-scattering model, consid-
ering the double scattering term in a stereographic projection for
a range of multiple-scattering models. In the regions of highest
DoP at scattering angles of 90 deg, the difference between this
second-order model and the simple Rayleigh model is less than
0.001 deg, as can be seen in Fig. 5. The band of high DoP fol-
lowing the 90-deg scattering angle arc shows similar agreement
in AoP. Regions near the neutral points show strong angular
variation. This is in agreement with the all-sky imaging polar-
imetry on Haleakala.95,96

In this section, we outlined a second-order scattering model
that included two components contributing to the polarization

pattern of the sky. We showed that by choosing regions of
the sky with high DoP, one can avoid several contaminations of
the AoP to a small fraction of a degree as shown in Fig. 5.
Choose points near the 90 deg scattering plane and away
from the horizon with high airmass to avoid multiple scattering
contamination when using this calibration technique.

2.2 Planning Sky Observations for Diversity and
Efficiency

This technique requires a diversity of input polarization angles
to minimize noise propagation when deriving telescope Mueller
matrices. There is an analogy between the time-dependent
Rayleigh sky input polarization and the retardances chosen to
create an efficient modulation scheme for polarization measure-
ments. By choosing telescope pointings and observing times
such that the solution for Mueller matrix elements is well con-
ditioned (efficient modulation by the daytime sky), a good cal-
ibration can be derived. Polarimeters typically produce intensity
modulations by changing the incident polarization state with
retardance amplitude and orientation changes. This retardance
modulation translated into varying intensities using an analyzer
such as a polarizer, polarizing beam splitter, or crystal blocks
such as Wollaston prisms or Savart plates. These modulation
schemes can vary widely for various optimizations and schemes
to maximize or balance polarimetric efficiency over user-
chosen Stokes parameters, wavelengths, and instrumentation
systems.106–111 There have been many implementations of ach-
romatic and polychromatic designs in both stellar and solar
communities.40,41,112–118 In the notation of these studies, the
instrument modulates the incoming polarization information
into a series of measured intensities (Ii) for i independent
observations via the modulation matrix (Oij) for j input

Fig. 4 The angular differences (in deg) between the single-scattering
Rayleigh model and the multiple-scattering model outlined above with
the double-scattering term. We use a log color scale and chose a sep-
aration of δ ¼ 4ATANðAÞ ¼ 12 deg and the sun is at 10 deg elevation.
A region within 20 deg of the sun has beenmasked and shows up as a
black circle. The scale bar on the right shows the color scheme with
white as 0.1 deg AoP angular difference and black as 0.001 deg AoP
difference. The line of symmetry between the sun and the antisolar
location is a region of minimal difference as is the 90-deg scattering
plane shown as the curved black arc in this stereographic projection.

Fig. 5 The AoP variation between the single-scattering Rayleigh
model and the multiple-scattering model here considering double
scattering. For this figure, the sun was placed on the horizon at an
elevation of α ¼ 0 deg. Each curve shows a trace from horizon to
the zenith (elevation 90 deg along the 90 deg scattering plane for
maximum DoP). The different colors correspond to different splitting
angles δ ¼ 4ATANðAÞ of 3 deg up to 27 deg in steps of 3 deg. As
the double-scattered term grows stronger and the splitting angle
increases, the AoP variations between single Rayleigh scattering
and this multiple-scattering model increases from 0.005 deg up to
and approaching 0.4 deg. However, at the 90-deg scattering location,
the angular differences between single- and double-scattering models
drop significantly.

Fig. 3 The multiple-scattering model with a splitting constant of
δ ¼ 4ATANðAÞ ¼ 27 deg. All projections are stereographic with
North up and East left. The sun is at the Zenith. (a) Stokes q and
(b) Stokes u in the altitude–azimuth frame. The gray-scale corre-
sponds to white ¼ 1 and black ¼ −1. (c) The DoP with black as 0
and white as 100%. The AoP computed as 0.5ATAN(q; u) is
shown in (d). The two polarization zero points are seen as the split
singularities near the zenith in the center of the AoP image. The
AoP is linearly scaled from black to white from 0 deg to 180 deg.
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Stokes parameters (Sj): Ii ¼ OijSj. This is analogous to our
situation in which we changed the matrix indices to be i inde-
pendent Stokes parameter measurements for j different sky
input Stokes parameters: Si ¼ RijMj.

In most night-time polarimeters, instruments choose a modu-
lation matrix that separates and measures individual parameters
of the Stokes vector, typically called a Stokes definition modu-
lation sequence
EQ-TARGET;temp:intralink-;e008;63;664

Oij ¼

0
BBBBBBBBB@

1 þ1 0 0

1 −1 0 0

1 0 þ1 0

1 0 −1 0

1 0 0 þ1

1 0 0 −1

1
CCCCCCCCCA
: (8)

Other instruments choose a wide range of modulation
schemes to balance the efficiencies over a number of exposures.
One recovers the input Stokes vector from a series of intensity
measurements by inverting the modulation matrix (O) via the
normal least squares formalism: S ¼ OT I

OTO. The demodulation
matrix is typically defined as Dij ¼ ½OTO�−1OT .

In our daytime sky technique, the Rayleigh sky input param-
eters become the modulation matrix (Oij ¼ Rij) and the formal-
ism for noise propagation developed in many studies such as
Refs. 107 and 108 apply. If each measurement has the same
statistical noise level σ and there are n total measurements,
then the noise on each demodulated parameter (σi) becomes
σ2i ¼ nσ2

P
n
j¼1 D

2
ij. The efficiency of the observation becomes

ei ¼ ðnPn
j¼1 D

2
ijÞ−1

2.
One must take care with this technique to build up observa-

tions over a wide range of solar locations, so the inversion is
well conditioned, as outlined in the Appendices of Ref. 100.
The path of the sun throughout the day will create regions of
little input sky Stokes vector rotation causing a poorly con-
strained inversion with high condition number. For instance,
at our location in the tropics, the sun rises and sets without
changing azimuth until it rises quite high in the sky. We are
constrained to observing in early morning and late evening
with the dome walls raised since we may not expose the
telescope to the sun. This causes input vectors at East-West
pointings to be mostly q oriented with little rotation over many
hours. Observations at other times of the year or at higher solar
elevations are required to have a well-conditioned inversion.
One can easily build up the expected sky input polarizations
at a given observing site with the Rayleigh sky polarization
equations. Then, determining the modulation matrix and noise
propagation for a planned observing sequence to ensure a well-
measured telescope matrix with good signal-to-noise (SNR) is
straightforward.

3 HiVIS Daytime Sky Observing Campaign
From October 2014 to May 2015, we collected a large data set of
daytime sky observations with HiVIS using the new liquid crys-
tal charge-shuffling configuration.31 We obtained over 1700
measurements in our standard setup with 17 spectral orders
and 4000 pixels per order. The daytime sky was observed in
a grid of telescope pointings (azimuth elevation combinations).

The first subset of telescope pointings was chosen starting
North-South with a 60-deg spacing for azimuths of [060,
120, 180, 240, 300, 360] and elevations of [10, 25, 50, 75].
The second subset of telescope pointings was chosen starting
East-West with azimuths of [030, 090, 150, 210, 270, 330]
and elevations of [20, 35, 60, 89]. See Ref. 31 for a schematic
and optical layout of HiVIS. The solar azimuth and elevation for
all observations are shown in Fig. 6. The sun was low in the
south for October to December 2014, while nearly passing
through the Zenith in May of 2015. These telescope pointings
were used during daytime sky observations over several days:
October 19, 24, 25, 29, 30; December 01, 11, 14, 15; and May 9,
10, 11, 16, 17, 18, for a total of 15 days spread over 7 months.

3.1 HiVIS Data Extraction

As part of routine calibration, modulation matrix elements were
derived using our polarization calibration unit.31 This unit is
a wire grid polarizer and a Bolder Vision Optik achromatic
quarter-wave plate on computer-controlled rotation-translation
stages. This polarization state generator unit is mounted
immediately in front of the HiVIS slit and dichroics slit window.
An alignment procedure was done during initial installation to
find the stepper motor rotation positions where the polarizing
axis of the polarizer and the fast axis of the quarter-wave retarder
are aligned with the Savart plate at nominal wavelengths. By
using a standard sequence of polarizer and quarter-wave plate
retarder orientations, six pure Stokes inputs (�q, �u, �v)
are used to derive redundant calibration sets.

There is cross-talk in the quarter-wave retarder that can be
compensated for by additional fitting techniques, but this effect
is also removed by using the daytime sky calibrations.31 By
demodulating the polarization state generator calibration data
at the slit, we decouple the spectrograph polarization response
from the telescope. The average system modulation matrix as
the average of all October 2013, December 2013, and May
2014 modulation matrices is shown in Fig. 7. There is little
variation in the derived modulation matrix within the main
observing periods of October, December, or May. For clarity,
only the median modulation matrix value for each spectral
order is shown. Calibrations are derived by doing spectral

Fig. 6 The computed solar azimuth and elevation for all HiVIS day-
time sky observations. May data had the sun near the zenith while
winter observations (October and December) had the sun low and
in the south. The observing allocations were dominated by sunrise
to noon times, giving far more observations with the sun east and
overhead.
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averaging (binning) to 50 spectral pixels per order. The variation
in individual modulation matrix elements is small (<0.05).
To remove any effect by varying system modulation matrix ele-
ments, we used calibration observations taken for each major
observing season. Typically within each run, full calibration
sequences were taken daily with little change shown over time-
scales of days to 2 weeks.

These modulation matrices are used to demodulate the dual-
beam charge shuffled measurements (3 exposures, 12 intensity
spectra) into individual quv measurements. The algorithm for
computing the telescope cross-talk elements assumes that the
measurements are projected onto the Poincaré sphere. Each indi-
vidual demodulated spectrum is divided by the measured DoP to
create scaled Stokes vectors with 100% DoP.

4 Filtering the Data for High Accuracy
Calibrations

There are several sources of error present when using daytime
sky measurements for computing telescope Mueller matrices.
In this section, we outline techniques to reject observations.

One limitation is that single-scattering Rayleigh sky model is
only an approximation. In areas of the sky with low DoP, the
computed AoP can vary substantially. This fact immediately
suggests removing data points with low measured DoP as
well as avoiding using the low DoP region of the sky for

this technique. Cirrus clouds have been shown to rotate the
AoP and also cause strong departures from the Rayleigh sin-
gle-scattering model. Cirrus clouds are known to decrease the
measured DoP in addition to rotating the polarization by a large
angle. On Haleakala, occasional small patches of low-laying
cumulus can blow over the telescope aperture a few hundred
feet above the ground. If a patch of cloud depolarizes a single
exposure of a data set, strong deviations from the Rayleigh sky
model can be seen. Figure 8 shows the measured DoP and our
scattering angle coverage for this observing campaign.

We experienced and must compensate for several types of
errors.

• Rayleigh sky model is inaccurate in low DoP regions.

• Cirrus clouds rotate AoP strongly.

• Optical window uncertainty (BK7/Infrasil encoder failure
and motor replacement).

• Operators manually point telescope to wrong pointing (no
computer feedback).

• Cumulus blow-by in single exposures (often on Haleakala
marginal inversion layer).

The measured DoP for each data set is shown in Fig. 12. On
three separate days there were thick cirrus clouds that impacted

Fig. 7 The quv to quv modulation matrix elements for the standard Stokes definition sequence liquid
crystal voltages derived using the full-Stokes injection unit (a polarization state generator) in front of the
HiVIS spectrograph slit. The unit is a wire grid polarizer and quarter-wave retarder on independently
controlled rotation stages for creating known quv inputs. The matrices shown here use only one (+)
of the two polarization calibration unit input Stokes parameter sets. Wavelengths span the ∼6300 Å
to 8800 Å range. For clarity, only the median value for each spectral order is shown (4000 spectral pixels
per order). The liquid crystals were roughly tuned for a standard Stokes definition modulation set around
7000 Å. The diagonal elements are roughly 0.9 at these wavelengths. The nondiagonal elements are all
nonzero, and some have amplitudes above 0.7 within the observed wavelength range.
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the measured DoP seen in measurements 200 to 300, 400 to 500,
and around 800. Light cirrus clouds were present on May 17 and
18. Low-lying cumulus clouds blowing over from the Haleakala
crater were possible in certain October and December days.
There are several ways to identify and filter this large data
set to select quality data.

4.1 Filter: Measured DoP Threshold

A simple data filter that improves calibration quality is discard-
ing observations showing low measured DoP. Low detected
polarization is often an indicator of either bad atmospheric
conditions or issues with the data. This calibration technique
requires knowledge of the AoP with reasonable precision to
keep noise amplification low.

At low DoP values, the AoP uncertainties grow substantially.
Figure 9 shows the number of daytime sky observations we have
in the data set after several filtering processes are applied. The
grid of (azimuth and elevation) observation points was linearly
interpolated to a continuous map over all observable (azimuth
and elevation) optical geometries. The small black triangles
show the position of a stellar target (ϵ Aurigae) we use for
calibration purposes. These triangles show a typical azimuth,
elevation track for a target marking each individual data set
where independent calibrations are required.

4.2 Filter: Rayleigh DoP Agreement Threshold

Several geometrical calculations are required for assessing and
filtering data using the Rayleigh sky model. Figure 12 shows the
angular separation between each measurement pointing and the
computed solar location. Note that there are three exposures
per complete full Stokes measurement set, so there are only
4890∕3 ¼ 1630 unique data sets. From the pointing and solar
geometry, we derive the input Rayleigh-sky stokes parameters.
One way of checking the agreement of the HiVIS data is to com-
pute the Rayleigh sky parameters from the HiVIS measurements
at all pointings. We can rearrange the Rayleigh sky polarization
equation to give the calculated maximum DoP (δmax) from the

HiVIS measured DoP (δ) and the scattering angle

(γ): δmax ¼ δ 1þcos2 γ
sin2γ

.

From this equation we can use the data to calculate a measure
of atmospheric conditions (δmax), and we can create a data filter
to reject HiVIS observations on hazy days with low δmax.
Figure 10 shows the computed δmax as a function of scattering
angle derived from the data set. The different color curves show
40%, 60%, and 80% δmax scalings. The δmax functions are rea-
sonably constrained by all-sky polarimeter measurements and
MODTRAN models.95,96 A simple function for the maximum
sky DoP δmax on a clear day is used following Mauna Loa mea-
surements: δmax ¼ 80 deg−20 deg× 90 deg

solar altitude
.119,120

Fig. 9 The color coding shows the number of daytime sky polariza-
tion observations at each telescope pointing available for the tele-
scope Mueller matrix calculations. The filtering by demodulated
DoP (DoP > 15%) is shown, but no iterative filter (convergence)
has been applied. Interpolation (linear) between neighbors on the
az–el grid has been applied for clarity. The small black triangles
show the altitude–azimuth track for a star, ϵ Aurigae that we observed
in 2015 to illustrate a typical altitude–azimuth combination required for
calibration.

(b)(a)

Fig. 8 The computed angular separation (γ) between the telescope pointing and the sun for all 4890
exposures (1630 full-Stokes polarization measurements) shown in (a). The measured daytime sky
DoP for each exposure set is shown in (b). Clouds, pointing, atmospheric properties, and time are all
variables. Note that these measured DoP values are used to scale each measured Stokes vector to
100% DoP for use in our calibration algorithm.
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By taking this simple relation, a set of data filters can be cre-
ated. Data points with low δmax predictions can be rejected as
likely influenced by clouds, haze, multiple scattering, and other
effects. The typical Rayleigh sky dependence on solar elevation
is scaled down by 30% and calculated for every data set to show
a minimum acceptable DoP for each measurement. Figure 10
shows the δmax values computed from the HiVS measurements.
There are a large number of points showing a high maximum
degree of sky polarization (δmax) as expected for a high, dry
observing site such as Haleakala.119,120 There are clusters of
points at low DoP values that correspond to days with cirrus
clouds. These points are rejected by data filters.

The measured DoP roughly follows the expected Rayleigh
patterns. The polarization is higher at scattering angles approach-
ing 90 deg, and the predicted maximum sky DoP (δmax) matches
Mauna Loa measurements on cloud-free days.119,120 This rule is
only approximate as daytime sky polarization is modified near
sunrise and sunset as well as by varying solar elevation.

4.3 Data Filtering Summary

We use several methods for ensuring data integrity and solution
consistency. First, we require an SNR threshold for every spec-
trum at a nominal wavelength. Second, we require a minimum
number of observations at each (azimuth and elevation) combi-
nation on the telescope pointing grid. Third, we reject observa-
tions with a low measured DoP after demodulation. Fourth, we
reject observations where the computed sky polarization as
estimated by the projected maximum DoP (δmax) suggests
haze, cloud, or other data contamination. Fifth, we reject
(azimuth and elevation) grid points with low AoP diversity to
ensure a well-conditioned solution (fit) to each Mueller matrix
element estimate. Sixth, an iteration is done to ensure that the
remaining observations give consistent Mueller matrix esti-
mates. The angular distance between observations and Rayleigh
model is preserved for a system that is not depolarizing. Thus,
data sets showing inconsistent angles between the bulk of the

observations are rejected. Seventh, an iterative process is
followed to ensure the Rotation matrix fits give consistently
calibrated measurements. Observations with a residual angle
between the calibrated observations and the Rayleigh sky
model above a threshold are rejected.

• Reject observations by measured SNR (>500 for all quv,
spectral order 3 after binned 80× to sampling of 50 spec-
tral pixels per order).

• Require several observations to compute the six Mueller
matrix element estimates (>4 points optimal).

• Reject observations by measured DoP (>15% after
demodulation).

• Reject low δmax points for agreement with Rayleigh model
(40% typical δmax for a clear day).

• Reject pointings with low qu input diversity (>20 deg for
each pointing).

• Reject observations where the calibrated Mueller matrix
calibrations show high error outliers (Scal · Mangle < 0.1).

• Reject iteratively by calibrated residual angle between
measurements and theory (Scal · R) until convergence
below a threshold angle (e.g., 25 deg) for consistency.

As examples of some of these filters, Fig. 11 shows three
different sets of Mueller matrix element estimates. We show
the element estimates on the (azimuth and elevation) grid for
(1) data from all seasons filtered as in the above list, (2) data
from only October but with a minimum of 3 points per (azimuth
and elevation) grid point, and (3) data from May with a mini-
mum measured DoP of 30%.

As the filters reject observations based on season, DoP, diver-
sity, or other minimum thresholds, some (azimuth and elevation)
grid points become excluded. Inspection of Fig. 11 also shows
that there are some points where there is seasonal disagreement.
The May and October data sets disagree at elevations of 89 deg.

(a) (b)

Fig. 10 (a) The measured sky DoP for HiVIS daytime sky observations as a function of angular distance
from the sun (γ). Only points passing a 10% DoP filter and a 30% δmax data filter are included. Colored
curves show the Rayleigh sky polarization δ as function of scattering angle for δmax amplitudes of 40%,
60%, and 80%. (b) The estimatedmaximum atmospheric DoP (δmax) computed directly from the demodu-
lated HiVIS exposures. The summer observing had a maximum solar elevation of 87 deg while the winter
observing season had a maximum solar elevation of around 55 deg. As we observed in the afternoons
more often (time allocation constraints) and had more time with the sun well above the horizon, there are
less data points at angular distances larger than 90 deg.
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We find that calibrations are consistent when the data filters
are set to the parameters above. Knowing in advance the impact
of several atmospheric factors, we outlined here can help when
planning a calibration observing campaign. To know how many
telescope pointings must be observed, we now assess the func-
tional dependence and errors when interpolating the telescope
model to intermediate pointings.

5 Mueller Matrices With Azimuth, Elevation,
and Wavelength

Once the telescope Mueller matrix elements have been esti-
mated on a grid of azimuth and elevation points, the full tele-
scope Mueller matrix must be interpolated to every possible
azimuth and elevation combination for every target that requires
calibration. As seen in Ref. 31, the Mueller matrix is smooth

(a) (b)

(c) (d)

Fig. 11 The six Mueller matrix element estimates computed at all azimuths and elevations with sufficient
numbers of valid measurements. The grid of points corresponds to the (azimuth and elevation) sampling
used for this study. Only data with valid observations are shown, giving rise to the grid pattern. Each of the
four panels shows estimates for QQ and UQ on top, QU and UU in the middle, QV and UV on the
bottom. (a) All data fromOctober to May with a minimum 15%DoPmeasured as well as a minimum of five
observations per telescope pointing requirement. (b) The October-only set with a 15%minimumDoP filter
and a minimum of three observations per pointing. (c) The December data with a 20%minimumDoP filter
and a minimum of three observations per pointing. (d) The May-only set with a 30% minimum DoP filter
and a minimum of five observations per pointing. A close inspection of some points near elevations of
90 deg shows some disagreement between the October and both the December and May sets. In all
the single-month October, December, and May data sets, some telescope pointings at elevations of
∼40 deg and azimuths ∼90 deg are not computed due to a lack of sufficient number of data sets. A
calibration campaign must balance the requirements for efficiency, speed, sufficient pointing coverage,
and having a large enough data set to reliably identify and reject contaminated outliers.
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trigonometric functions of azimuth and elevation. This is caused
by the fold mirror axes crossing in the f∕200 coudé path.

The Mueller matrix elements can be modeled as sin and
cos functions with a range of possible forms. As a simple
test, we included fits to functions of azimuth and elevation
with the forms sinð2Azþ 2ElÞ, sinðAzþ ElÞ, sinð2ElÞ, sinðAzÞ,
sinðElÞ, constant.

We will show in later sections that these azimuth–elevation
trigonometric functions are a natural consequence of the optical
design and are the only terms required to fit the Zemax-predicted
Mueller matrix elements from the design.

These equations can be expanded using trigonometric iden-
tities to include 13 possible terms. Since the domain of the fit is
restricted to azimuths of 0 deg to 360 deg and elevations of only
0 to 90, care must be taken regarding the uniqueness of the fit
parameters given various combinations of the functions. After
testing several functional forms, we found that only the sin
(2Azþ 2El) and sin(2Az) terms had significant amplitude.
These functional forms are fit to the Mueller matrix element
estimates as well as the rotation matrix fits to the estimates.
Typically, only very small differences between the individual
Mueller matrix estimates and their corresponding trigonometric
function fits are seen. We use a shorthand notation sin¼S, cos ¼
C and subscripts for A ¼ azimuth, E ¼ elevation. The best func-
tion we found to fit for each Mueller matrix estimate contains
these six terms: S2AC2E; S2EC2A; C2AC2E; S2AS2E; S2E; C2E.

As an example of the coefficients found when fitting each of
the six Mueller matrix element estimates, Fig. 12 shows the
terms for spectral order five at a wavelength of 6881 Å. Each
particular Mueller matrix element seems to be dominated by
only 1 or 2 terms.

The small differences between the trigonometric function fits
to the rotation matrices and the original Mueller matrix element
estimates show how well the interpolation method reproduces
all Mueller matrix element estimates over the azimuth–elevation
grid. Figure 13 shows the difference between the trigonometric
fits and the original Mueller matrix elements. The differences
were computed only for (azimuth and elevation) points where
all filters were applied and a valid result was obtained. Some
slight variation at elevations of 0 and 90 are seen in a few
Mueller matrix elements.

5.1 Interpolation Scheme Errors: Rotation Refits to
Trig Functions

The trigonometric function fits to the rotation matrix element
azimuth–elevation dependences cause some interpolation errors.
The rotation matrices are refit to ensure that the Mueller matrices
are strictly rotation matrices. This adds one more step in

(a) (b)

Fig. 12 (a) The six-term trigonometric function coefficients fit to the rotation matrices derived from all six
Mueller matrix estimate terms for spectral orders 5 at a wavelength of 6881 Å. Each color corresponds to
a different Mueller matrix element. For instance, black shows the QQ term, which is dominated by coef-
ficients 2 and 3 giving a functional form ofC2AC2E þ S2AS2E . Demodulation was done using the + inputs,
and a minimum 15% measured DoP filter has been applied. The iterative consistency and Rayleigh
minimum DoP maximum filters have also been applied. (b) The cumulative distribution function (CDF)
for the errors between trig-based Mueller matrix estimates and the corresponding rotation matrix fits for
spectral order 3. Each color shows one of the six Mueller matrix estimate residual CDFs. The 15% DoP
and consistency-filters have been applied.

Fig. 13 The difference between the trigonometric function fit rotation
matrix elements and each of the corresponding Mueller matrix
element estimates derived directly from the data. The gray-scale
has been highly stretched to highlight differences at �0.1 amplitudes.
The differences were computed only where valid observations are
recorded after all the filters are applied. Linear interpolation was
performed to all other pointings to make smooth maps. The 15%mini-
mum measured DoP filter and iterative consistency-filters have been
applied. These represent the disagreement between the empirical
Mueller matrix estimates and the trigonometric functions.
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processing to ensure that any data calibrated at an arbitrary
azimuth–elevation is not corrupted by the interpolation process.
In addition, interpolation from our chosen grid to the actual
telescope pointing of any desired target adds uncertainty. This
interpolation introduces another source of error. The trigonomet-
ric fitting functions create errors in the Mueller matrix estimates
at all intermediate pointings because they are derived from inter-
polated rotation matrices. We chose a finely sampled azimuth–
elevation grid spacing of 1 deg for this campaign.

To quantify this fitting error, differences between interpo-
lated Mueller matrix elements and the corresponding refit
rotation matrix elements were derived for telescope pointings in
between the nominal observed azimuth–elevation grid at the
maximum angular distance. The cumulative distribution func-
tion for these Rotation matrices minus the Mueller matrix esti-
mate residuals is shown in Fig. 12.

5.2 Wavelength Dependence

The Mueller matrices for HiVIS are smooth functions of
wavelength. Figure 14 shows the azimuth–elevation dependence
for HiVIS in four spectral orders numbered [0,5,10,15] corre-
sponding to wavelengths of [6260, 6880, 7650, and 8600 Å],
respectively.

For wavelengths short of 7500 Å, the linear to circular and
circular to linear cross-talk terms are quite large. The VV terms
show elevation dependence and are much less than 1. For the last
spectral order at 8600 Å, the VV term is nearly 1 and shows
negligible dependence on elevation. The VQ and VU terms
show nearly �1 amplitudes with strong functional dependence
on azimuth and elevation at the shorter wavelengths <7000 Å,
but are nearly 0 at 8600 Å. As wavelengths increase, the polari-
zation response of HiVIS goes from severe linear-to-circular

0

Fig. 14 The best fit Mueller matrix derived for four different spectral orders as functions of azimuth and
elevation. All panels are on a linear gray-scale of�1. The final rotation matrices shown here are fits to the
trigonometric function-based Mueller matrix maps on a fine altitude–azimuth grid. The 15% minimum
measured DoP filter and iterative consistency-filters have been applied. The four spectral orders are
[0,5,10,15], corresponding to wavelengths of 6260 Å, 6880 Å, 7650 Å, and 8600 Å, respectively. For
the longest wavelength in the lower right corner, the VV term is essentially�1 with minimal dependence
on elevation. The QU terms show the expected geometrical projection from an altitude–azimuth-based
reference frame to the fixed slit-based reference frame. The VQ and VU terms on the right side of each
panel show nearly �1 amplitudes at the shorter wavelengths <7000 Å but are nearly 0 at 8600 Å.
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cross-talk to very benign cross-talk approaching the nominal
geometrical qu variation expected for an altitude–azimuth ref-
erenced coordinate frame.

5.3 Zemax System Modeling of Azimuth-Elevation
Dependence

The optical ray tracing program, Zemax, has the ability to per-
form fully polarized ray propagation using a Jones formalism.
With this program, we can verify that the trigonometric func-
tions in azimuth and elevation fully capture the behavior of
the telescope Mueller matrix. We have used this program in
the past to create polarization models of HiVIS.24,27 With the
polarized ray trace function called POLTRACE, a Zemax user
can propagate rays from any pupil coordinate (Px; Py) to any
field coordinate (Hx;Hy) in the Zemax file. By selecting a
set of fully polarized inputs in the Jones formalism that also
correspond to the Stokes vectors (quv), one can determine
the polarization response of an optical design. With the Zemax
programming language, we trace many rays propagated from
a grid of coordinates (Px; Py) across the pupil through the opti-
cal system to the corresponding focal plane. Typical sampling of
10% where the pupil coordinates (Px; Py) are scanned in steps
of 0.1 achieves 0.0001 level or better agreement to Mueller
matrix calculations using more fine pupil sampling. This match
between Mueller matrix terms depends on the details of the opti-
cal system including optical power, tilted optics, and, in general,
the symmetries in the polarization properties of the exit pupil.
However, a 0.1 step in Px; Py seems to be a good compromise
between model run speed and calculation sensitivity. Tests run
at step sizes of 0.01, 0.025, and 0.05 do not vary by more than
the fifth decimal place under typical, mostly symmetric, non-
vignetted system configurations.

The Zemax electric field calculations in the Jones formalism
are turned into Stokes vector formalism for each of the pure quv
input states. The POLTRACE function outputs electric field vec-
tor amplitudes (Ex; Ey; Ez) and phases following the Jones for-
malism for every ray traced. For simplicity in large f∕number
beams, we project this three-dimensional (3-D) field onto a
two-dimensional surface ignoring the z components along the
direction of propagation. As the HiVIS polarimeter operates
at f∕40, this is a reasonable assumption for this analysis.

The computed Stokes intensity is the square of the electric
field amplitudes (Ex × Exþ Ey × Ey). This incoherent average

is also a reasonable approximation for seeing-limited systems or
systems not fully sampling the polarized diffraction limited
point spread function. Stokes Q goes as the X and Y intensity
difference: (Ex × Ex − Ey × Ey). Stokes U is computed from X
and Y electric field amplitudes as well as phase variations:
2: × Ex × Ey × cosðδÞ. Stokes V is similarly computed with
both XY field amplitudes and phases: 2: × Ex × Ey × sinðδÞ.
The term δ represents the phase difference.

A key parameter for determining the polarization response
of an optical system is the coating formulation. The output
polarization models are very sensitive to the coating model
thicknesses. We performed some experiments with predicting
AEOS and HiVIS polarization response using various coating
formulations. As we do not have access to the coating or coating
formulas for the AEOS mirrors, we show a range of represen-
tative functions derived from common coatings. Figure 15
shows some of the formulas commonly used in enhanced pro-
tected silver mirrors. The phase retardation and diattenuation
for these coatings is shown in Fig. 15 is for a 45-deg reflection
using enhanced protected silver-coated mirrors.

The retardance of these one- and two-layer coatings matches
vendor-provided curves. For a typical two-layer coating, the
retardance has two wavelengths where the nominal 180 deg
phase crossing occurs. The exact thickness and materials in
the coating determine which wavelengths, but overall the cross-
ings typically occur in the blue-green and red-near-infrared
regions of the spectrum. Usually the retardance is 10 deg to
30 deg above 180 deg for the intermediate bandpass and below
180 deg outside these wavelengths. Single-layer protective
coatings such as the fused silica over silver have a retardation
always below 180 deg. This is seen as the red curve in Fig. 15.

As expected, all the enhanced protected silver formulations
with ZnS as an over-coating show diattenuation values below
1% for wavelengths longer than 550 nm. This includes all of
the double-layer coatings. The formulas with a fused silica
over-coating show higher induced polarization levels.

Most multilayer coatings have polarization responses that are
strong functions of the angle of incidence. At near-normal
angles of incidence, the coatings shown in Fig. 15 will all dis-
play the nominal 180 deg phase and minimal diattenuation. As
the angle of incidence is increased past 45 deg, the retardation
will be over 40 deg above nominal. As Zemax propagates light
ray-by-ray through an optical system across both pupil and field,

(a) (b)

Fig. 15 The top panel retardance in degrees phase for a 45-deg fold mirror coated with various flavors of
enhanced protected silver formulas. The solid black line shows a typical enhanced protected silver
specification. The other lines show the retardation caused by various coating formulations. Common
materials and coatings include zinc sulfide (ZnS), sapphire (Al2O3), fused silica (SiO2), and over silver
(Ag). The retardation of multilayer coatings often crosses the nominal 180 deg phase at two wavelengths
in the visible. The red curve shows a single fused silica coating, and this curve never reaches 180 deg.
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the angle of incidence is accounted for in the ray-trace. Any
variations in angle of incidence across a beam footprint from
asymmetries, off-axis rays, decentered optics, and/or vignetting
will be propagated to the focal plane.

To demonstrate the typical functional dependence of polari-
zation, we computed the system Mueller matrix as functions of
azimuth and elevation for all spectral orders HiVIS samples.
Figure 16 shows a typical output Mueller matrix. The intensity
to polarization and the polarization to intensity terms were
linearly scaled to �1.5%. Note that this predicted induced
polarization and depolarization is quite small, further supporting
the assumption that the telescope is only weakly diattenuating.
The polarization to polarization terms (quv to quv) have been
scaled to �1. The functional dependence is exactly as found
using our trigonometric functions above. The qu to quv terms
have a strong azimuthal dependence. The qu to v terms are
dominated by elevation dependence.

To demonstrate how the coating formula changes polariza-
tion predictions, we computed Mueller matrix predictions for
all coating formulas in Fig. 15. The full range of optical motion
possible in the HiVIS system was used to show the dependence
of coating retardation on the Mueller matrix element zero-
crossings as well as the relationship between coating formula
predictions. Figure 17 shows the functional dependence of
the predicted Mueller matrices at chosen azimuth–elevation
locations. Some terms are dominated by azimuthal dependence
and are plotted versus azimuth while other terms are strongly
dependent on elevation only and are plotted with elevation.

Different coating formulas have very different telescope point-
ings where minimal or maximal values occur. The sign and even
functional form of some Mueller matrix elements can change
with coating formula.

5.4 Mueller Matrix Functional Dependence
Summary

The system Mueller matrices are smooth functions of telescope
pointing and wavelength. Using relatively simple trigonometric
functional dependencies, calibration of any data set at an arbi-
trary telescope pointing is possible. The errors inherent in pro-
jecting from a coarsely sampled azimuth–elevation grid to any
arbitrary location are less than or comparable to other errors pre-
sented in this paper. More accurate calibration can be obtained
by calibrating the telescope at the actual pointings for a priority
target.

Zemax modeling has been performed to verify the amplitude
and basic functional dependence of the system Mueller matrix
with azimuth and elevation given common coating formulas.
Good agreement is seen between Zemax predictions and mea-
sured amplitudes. The induced polarization and depolarization
terms are consistent with results previously presented for
HiVIS.24,27,31,100,101,121

6 Other Instrument Limitations
The HiVIS system also has other limitations to calibration pre-
cision arising from instrumental issues. As an example, during
this campaign we discovered an optical misalignment that leads
to unstable continuum polarization. As part of the InnoPOL
campaign, we designed, built, and installed a diffraction limited
f∕200 laser simulator system.24 It was discovered with this laser
simulator that the HiVIS fore-optics were delivering the beam to
the spectrograph such that the pupil image was being vignetted
by the echelle grating. Small changes in the illumination caused
by guiding errors and atmospheric seeing caused a variable
vignetting that influenced the continuum polarization. This
vignetting is likely the source of many continuum polarization
instabilities reported in Ref. 31. If the continuum polarization is
unstable for point sources, stellar continuum estimates are sub-
ject to an additional source of error. This error is reduced for
continuum sources. Vignetting and illumination of the edges of
the optics caused some of the scattered light issues reported in
Ref. 31, degrading the polarization calibration of highly polar-
ized sources. This was shown as the asymmetry of continuum
polarization between charge shuffled beams shown in Ref. 31.

6.1 Intensity to quv Cross-Talk

With such a large data set, we were able to investigate the
median intensity to quv cross-talk following a simple cross
correlation.30 The quv spectra are known to contain very large
continuum variations with measured DoP above 85%. However,
with so many spectra, we can compute the average continuum-
subtracted daytime sky polarization spectrum to very high shot
noise statistical limits. This allows us as a very sensitive test of
the intensity to polarization cross-talk from artifacts in the data
reduction pipeline.

These intensity spectra were normalized by a continuum fit-
ting process. The spectra were median-filtered in wavelength.
Note that HiVIS has two amplifiers used in reading out each
CCD and there are two CCDs in the mosaic focal plane. The
median smoothed intensity spectra for each amplifier was fit

Fig. 16 The Zemax simulated Mueller matrix at 626 nm for 360-deg
azimuth variation and a fully articulated 0 deg to 180 deg elevation
range using a nominal enhanced protected silver coating on all
surfaces except the primary mirror (aluminum + aluminum oxide).
The full elevation range was modeled to demonstrate the elevation
dependence of some Mueller matrix elements. The mirror geometry
provides two degenerate optical configurations when pointing to a
particular point on the sky with different Mueller matrix calculations
(under the substitution azimuth–azimuth �180, elevation–180–eleva-
tion). The intensity to quv terms have been linearly scaled to �1.5%.
The quv to quv terms have been scaled to �1. The II term has not
been displayed because it is set to 1 in this model calculation.

Journal of Astronomical Telescopes, Instruments, and Systems 018001-15 Jan–Mar 2017 • Vol. 3(1)

Harrington, Kuhn, and Ariste: Daytime sky polarization calibration limitations



with an individual polynomial. The intensity spectra were then
divided by these polynomial fits to create continuum-normal-
ized spectra. There was some additional small level fluctuation
with wavelength that was subsequently removed with a 60-pixel
boxcar smooth fit.

The corresponding intensity and average continuum sub-
tracted median v ¼ V∕I spectra for selected spectral orders
are shown in Fig. 18. The intensity to polarization cross-talk
is immediately apparent at levels of 0.1% to 0.3% for these con-
tinuum measurements. As shown in Ref. 31, there is substantial
blending between the charge shuffled and modulated exposures
when looking at continuum sources with a wider slit length.
We recently installed several new dichroic masks in addition
to slits of different lengths and widths to test and overcome
these limitations. The high-sensitivity spatial profiles presented
in the Appendix of Ref. 31 show that roughly 15 spatial pixels

of separation was required in the old optical configuration to
obtain 0.1% intensity contrast. An investigation after the new
optical alignment may change these numbers substantially.

6.2 Calibration at Reduced Spectral Sampling

For this paper, we performed the demodulation and calibration
analysis at very low spectral sampling. The HiVIS data were
spectrally averaged by 4000× to a single spectral measurement
per order. This achieved high SNR for all spectral orders but it
does neglect real spectral variation with wavelength. There are
known variations with wavelengths for the demodulation matri-
ces as well as the measured sky polarization across spectral
orders that have been neglected for this study.

Figure 19 shows the median modulation matrix derived for
the UU term for spectral order 3 at 6620 Å. The variation across

Fig. 17 Comparison of coatings for all Mueller matrix elements at 600 nm. Each panel shows either
azimuth or elevation dependence at particular pointings as appropriate for the element. Telescope point-
ing locations were chosen to demonstrate how each coating formula changes the amplitude and relative
zero-crossing for the different Mueller matrix elements. Solid lines are one limiting case in either azimuth
or elevation with dashed being the opposite extreme to demonstrate maximal polarization effects
(crossed mirrors and maximal differences). The polarization to intensity terms are dominated by elevation
dependence. The qu to qu terms are strongly azimuth dependent. Red shows the fused-silica over silver
single layer formula Ag-SiO2. Black is MgF2 over silver. Dark blue is fused silica over sapphire over silver.
Light blue is zinc sulfide over sapphire over silver. As we do not know the actual coating formula for the
various AEOS mirrors, these functions represent the range of possibilities for an optical system using
mirrors with common formulas.
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the spectral order is roughly 0.02 in amplitude. Since the cali-
bration process uses only a single point per spectral order, there
are potential errors at all wavelengths arising from using the
average value when the modulation varies from 0.045 to
0.065 across the order. Similar amplitude and slowly varying
spectral dependence is seen in all terms of the modulation
matrix. As the other errors presented in this paper are of
order 0.01 to 0.05, this spectral binning is a contributor to
the calibration uncertainties. Performing calibration at increased
spectral sampling should remove this error source.

6.3 Modulator Stability

The temporal drifts or other instabilities of an instrument can be
a major limitation to any calibration effort. During this cam-
paign, we did not change any HiVIS configurations to minimize
system drifts.

The polarization calibration procedures were followed and
standard modulation matrices were recorded. Longer term
variations in the system modulation matrix recorded over the
campaign showed variations in terms of up to 0.05, but this
is compensated for by calibrations specific to each night of
data collection. This figure shows the difference between the
average modulation matrix and the modulation matrix derived
for the three main observing sessions (October, December, and
May). The variations are roughly 0.06 peak-to-peak for modu-
lation matrices with amplitudes ranging from −1 to þ1.

Although we did perform calibrations for every observing
run, these liquid crystals are temperature-dependent and are
known to drift. Our internal calibrations show the temperature
sensitivity.101 Unfortunately, the temperature control of the
AEOS coudé room resulted in temperature changes of up to
5°C in some cases. These drifts certainly contributed to calibra-
tion errors similar to those presented in Ref. 31.

6.4 Limitation Summary

In this section, we presented several other instrument calibration
limitations specific to HiVIS. The angular error histograms
presented31 showed the angle between theoretical sky polariza-
tion and the calibrated observations. We can compute the
angular error between calibrated daytime sky spectra and the
single-scattering model for our data set in a similar manner.
Figure 20 shows such angular differences with wavelength
for a data set at azimuth 180 deg and elevation 50 deg.

Angular variations of ∼6 deg on the Poincaré sphere corre-
spond to Mueller matrix element and Stokes vector values of
0.1. There are several errors presented in this section that can
create calibration uncertainties of ∼0.1 in a Stokes parameter.
Liquid crystal temperature instability, reduced spectral sampling
and optical misalignment could all contribute to errors in cali-
brated data.

(a) (b)

Fig. 18 The average intensity and v polarization spectra for May 16th and 17th. (a) The continuum nor-
malized intensity spectrum filtered by a 60-pixel boxcar smooth to remove low amplitude ripples.
(b) Stokes v . select spectral orders are shown with a wide range in number of spectral lines and asso-
ciated line depths. CCD edges were trimmed (from 2048 pixels down to 2000 pixels per CCD). The gap in
the middle of each spectrum represents the CCDmosaic gap in addition to the 24 pixels trimmed from the
edge of each device. Clear v line polarization spectra are seen in all lines for all displayed wavelengths
with amplitudes of 0.1% to 0.5%.

Fig. 19 The modulation matrix element for the UU term for spectral
order 3 at 6620 Å. The chromatic variation across the 4000 spectral
pixels accounts for variation of 0.2, which is comparable to other error
sources presented in this paper.

Journal of Astronomical Telescopes, Instruments, and Systems 018001-17 Jan–Mar 2017 • Vol. 3(1)

Harrington, Kuhn, and Ariste: Daytime sky polarization calibration limitations



7 Summary
We have presented a 6-month long campaign of 1600 polarized
daytime sky spectra to test the algorithms to compute telescope
Mueller matrix calibrations. There are several considerations for
planning a calibration observing campaign including the AoP
diversity and the functional dependence expected for the tele-
scope Mueller matrix with azimuth and elevation. Plan observa-
tions to have a large input polarization angular diversity to
provide a well-conditioned matrix inversion (least squares
solution) and to ensure good estimates for the Mueller matrix
elements. We presented several data-based filters necessary
to avoid potential problems with data collection, sky model
uncertainties, sky polarization variations, and instrumental
limitations.

A single-scattering model for the linear polarization angle of
the daytime sky can be used if calibration data are taken away
from regions of naturally low sky polarization. This avoids con-
tamination from multiple scattering as shown in our analysis of a
second-order scattering model. We showed a two-term scatter-
ing model for the sky polarization that consists of a single-
scattering model plus a constant polarized background from
typical multiple-scattering sources. The regions of sky 90 deg
from the sun are highly polarized and the AoP is much less
sensitive to multiple scattering. Predictions with large multiple-
scattering contributions showed that the AoP agreed to better
than 0.01 deg linear polarization rotation in the highly polarized
region of the sky near the 90-deg scattering plane.

We showed in the appendices that treating a weakly polar-
izing telescope Mueller matrix as a rotation matrix is insensitive
to induced polarization and depolarization terms. By neglecting
induced polarization and depolarization, we fit the quv cross-
talk elements as a rotation matrix. We showed that this
assumption is second-order in small terms from the first row
and column of the Mueller matrix. For our system with many
enhanced protected silver-coated mirrors, the induced polariza-
tion is predicted by Zemax to less than 2% while cross-talk is
100%. Our observations of unpolarized standard stars support

this low number, within the limitations of the optical misalign-
ments reported here.

Several data rejection filters can be applied to ensure quality
calibrations. We reject observations with low measured SNR.
For this work, we used SNR > 500 for all quv in spectral
order 3 at 6620 Å after spectral binning by a factor of 80×
to sampling of 50 spectral pixels per order. We require at
least n > 3 observations to compute the six Mueller matrix
element estimates. We reject observations if the measured
DoP is less than 15%. For every observation, a calculation of
the Rayleigh sky maximum DoP (δmax ) using the data is
required to be above 40% to guarantee a clear sky. Telescope
pointings where the data set provides a limited range in the
input AoP are also rejected (<20 deg) because the low angular
diversity will amplify errors. Iterative filters based on conver-
gence criteria were shown to reject statistical outliers. After ini-
tial calibrations are done to the data set, we reject individual
outliers where there is a large residual angle on the Poincaré
sphere between the calibrated measurements and the single-
scattering theory (Scal · R) until the group of points converge
below a threshold angle (e.g., 25 deg) or the data become
too sparse to compute a Mueller matrix.

We showed how observations taken on a sparse grid azimuth
and elevation telescope pointing combinations can be interpo-
lated onto a continuous function set. By using Zemax optical
models of AEOS and HiVIS with representative enhanced
protected silver mirror coatings, we can show the expected
functional dependence of the Mueller matrix with azimuth
and elevation. The Zemax models show that simple functional
dependence is expected, and the assumption of weakly polariz-
ing optics is both predicted in Zemax and observed by HiVIS
using daytime sky calibrations. The interpolation from a sparse
grid of (azimuth and elevation) measurements adds some errors,
but with careful planning of calibration observations, the errors
from interpolation can be minimized or removed by calibrating
along the same pointings as the observations.

Appendix A: Second-Order Scattering Model
for the Sky
We summarize here the mathematics used to expand a scattering
model with an additional constant polarization term in addition
to the single-scattering Rayleigh term. In the notation of Ref. 66,
they used ζ to denote the complex location of a point on a
stereographic projection of the sky. In Cartesian geometry,
ζ ¼ xþ iy. In polar coordinates, ζ ¼ r eiϕ. In Ref. 66, they
used the term w to represent the polarization pattern across
the sky. By breaking the exponential equation into an amplitude
term jwj and a complex orientation term γðζÞ, they represent
the stereographic projection for the sky polarization pattern
as wðζÞ ¼ jwje2iγðζÞ. For the single-scattering case, this simple
relation behaves as ζ2 can be scaled to an amplitude of 1 and
written in polar coordinates (r;ϕ) as wðζÞ ∼ ζ2 ¼ r2e2iðϕ−

π
2Þ.

To add multiple scattering to this equation, we must consider
the shift of the zero polarization points away from the solar and
antisolar locations. These zero points are Brewster and Babinet
points near the sun as well as the Arago and second Brewster
point near the antisolar location. Several empirical results show
that the singularities are found above and below the sun along
the solar meridian. This generally follows from the empirical
result that double scattering is the dominant contribution to
multiple scattering in the typical locations surveyed. This

Fig. 20 The angular residual variation between calibrated HiVISmea-
surements and the computed Rayleigh sky model on the Poincaré
sphere. Calibrations and observations were taken at a telescope azi-
muth of 180 and elevation of 50. The minimummeasured DoP filter of
30% was applied.
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double-scattering contribution is generally polarized in the ver-
tical direction as it represents the light scattered into the line of
sight from the integrated skylight incident on all points along
the line of sight. When the sun is low in the horizon, the low
DoP regions of the sky are also low on the horizon. This
double-scattering contribution is of the same amplitude as the
single-scattered light when the single-scattered light is weak
and horizontally polarized, which occurs above and below
the sun at low solar elevations during sunrise and sunset.

The simplest perturbation to the model is to add a constant
representing a small additional polarization of assumed constant
orientation denoted A. Following Ref. 66, the zero polarization
singularities fall at the locations of ζ ¼ �iA, which corresponds
to a Cartesian y value of �A. To make the singularities at the
antisun location, the equation was generalized to

EQ-TARGET;temp:intralink-;e009;63;587wðζÞ ∼ ðζ2 þ A2Þ
�
ζ2 þ 1

A2

�
: (9)

The Reference 66 notation showed the four zero polarization
singularities as simple functions of the solar position and the
constant A. If you denote the solar elevation as α and use
the stereographic projection where the sun is on the y axis at
the location ζ ¼ iys ¼ ið1 − tan α

2
Þð1þ tan α

2
Þ, the four zero

polarization singularities are located

EQ-TARGET;temp:intralink-;e010;63;477ð1Þζþ ¼ i
ys þ A
1 − Ays

ð2Þζ− ¼ i
ys − A
1þ Ays

ð3Þ−1
ζ�þ

ð4Þ−1
ζ�−

:

(10)

To make the polarization function symmetric across the sky
(antipodally invariant) and to scale the DoP to 100%, the polari-
zation equation can be normalized and written in terms of these
singularity locations as

EQ-TARGET;temp:intralink-;e011;63;375wðζÞ ¼ −4
ðζ − ζþÞðζ − ζ−Þ

�
ζ þ 1

ζ�þ

��
ζ þ 1

ζ�−

�

ð1þ r2Þ2
���ζþ þ 1

ζ�þ

������ζ− þ 1
ζ�−

��� : (11)

The denominator was chosen with the complex modulus terms
to ensure the amplitude jwj is always 1. With this simple equa-
tion, you can relate the constant A to the angular separation of
the polarization zero points as δ ¼ 4 ATAN(A).

Appendix B: Details of Data Set Filters
We outline in this section details of some of the filters applied to
the HiVIS data set as we enforce consistency and quality across
the daytime sky observing campaign.

B.1 Filter: Input Angular Diversity Threshold
This computational algorithm relies on the assumption that we
can solve for a set of rotation matrix angles to match the input
data with the Rayleigh sky model through a least squares
process. If the input data lacks enough angular diversity, the
least squares solution becomes badly conditioned, leading to
very large noise propagation errors. We require that all (azimuth
and elevation) grid points in the computation have sufficient
range of input polarization angles (large angular diversity).
We find that a minimum of ∼20 deg angular diversity is
required to give a well-conditioned solution.

The high-elevation telescope pointings near the zenith only
have 30 deg of input diversity in our survey largely because the
telescope cannot observe the Zenith while the sun is high above
the horizon. Given the nearly East-West oriented rise and set
azimuths for the sun during the summer, there is not much diver-
sity in the input polarization angles along East-West telescope
azimuths. For telescope pointings at low elevations in the north,
the telescope sees a large input AoP diversity for all seasons.
Given the winter data set with the sun rotating through all azi-
muths lower in the south, the input diversity is at least 3× higher
at these telescope pointings.

B.2 Filter: Consistency and Convergence of
Matrix Element Estimates

By comparing the agreement between individual calibrated
measurements and the least-squares solution for the calibration
itself, we can identify outliers and reject them from the data set.
We call this filter consistency because it checks the agreement
between each individual measurement and the resulting average
over all measurements. Statistical outliers can be rejected given
a threshold. One would expect smooth variation in the rotation
of the polarization caused by the telescope-induced cross-talk.
The measured quv parameters should be a smooth function of
input polarization angle. As an example, the measured (demodu-
lated, 100% scaled) Stokes parameters (quv) are shown in
Fig. 21 for a telescope pointing of azimuth of 60 deg and eleva-
tion of 25 deg. There is strong rotation of the measured cross-
talk as the input polarization angle varies with solar location
throughout the year.

The angular rotation in quv space between the initial input
Stokes vector and subsequent measured Stokes vectors is a use-
ful test of the Mueller-matrix-as-a-rotation-matrix assumption.
Assuming the cross-talk is confined to a rotation matrix unin-
fluenced by the induced polarization or depolarization as shown
by our sensitivity analysis, the angular rotation between sub-
sequent measurements should also match the angular rotation
of the modeled Rayleigh sky qu inputs. In most cases, the mod-
eled angular rotation in quv space matches the measured angular
rotation with errors of less than 10 deg.

B.3 Filter: Iterative Filtering and Rotation
Matrix Solution Consistency

As another independent assessment of the data, we can ensure
that the individual data points used to create Mueller matrix esti-
mates give consistent results and are not statistical outliers com-
pared to the average. We can apply a data filter by requiring that
the derived rotation matrix calibrates each individual measure-
ment to within some threshold tolerance of the average. To
check the consistency of the telescope Mueller matrix solution,
we create an iterative process. We apply the above processes of
fitting the telescope Mueller matrix elements and calibrating all
individual polarization measurements. Once we derive an initial
set of calibrations, we apply the calibration to all individual
measurements. With calibrated measurements, we can check
the differences between each calibrated individual measurement
and the associated Rayleigh sky model. If these differences are
above a threshold, we can identify and reject the data as an out-
lier. An iterative process was written to follow these steps:

• 1. Compute Mueller matrix estimates from all
measurements.

• 2. Fit for Euler angles ξiðα; β; γÞ.
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• 3. Compute rotation matrix elements for telescope
Mueller matrix approximation.

• 4. Calibrate all data points used to compute Mueller
matrix estimates.

• 5. Compute angular difference (S · R) between all cali-
brated data and predicted Rayleigh sky.

• 6. Check if all data points are below a threshold value for
angular differences (Convergence?).

• 7. If no points are rejected, stop.

• 8. If points are above the threshold, reject the data point
with highest angular difference (nominally 25 deg).

• Repeat all steps with newly filtered data set until conver-
gence criteria are obtained.

Outliers are rejected and the process is repeated until
convergence criteria are met. Note that in this formalism, the
Rayleigh sky model and the measured demodulated, scaled
Stokes parameters both have 100% DoP and are by definition
vectors with a length of 1. We can calculate the angle between
the calibrated measurements and the model sky polarization at
each measurement (i) with a simple dot product as: Qi ¼
ACOSðRi · SiÞ.

The first steps in computing Mueller matrix elements were
shown in Fig. 11. These Mueller matrix estimates are then fit to a
rotation matrix via the least squares process. These rotation
matrices are used to calibrate all individual quv measurements.
The rotation error among these calibrated measurements and
the Rayleigh sky is computed. As shown in Fig. 14 of Ref. 31,
the fitting of the Mueller matrix elements to a rotation matrix
results in some differences. The six individual Mueller matrix
element estimates here are typically within 0.1 of the final
rotation matrix fit values. Depending on the number of points,
filters, input polarization angular diversity, and other factors,
the cumulative error distribution functions show that 80% of
the Mueller matrix estimates are between 0.03 and 0.1 of the
final fit value.

B.4 Uncertainty in Optical Window
We have two different window options (BK7 and Infrasil). As
outlined in the schematic of Ref. 31, the telescope has a wheel
for different window substrates that separate the coudé lab
from the telescope optical feed. The windows are mounted in
between the sixth and seventh mirrors in the optical train.
The windows are permanently mounted in the wheel and are
in the vertical orientation as the incoming f∕200 beam travels

Fig. 21 The measured data over the entire campaign for a telescope pointing of azimuth 60 deg and
elevation 25 deg. Stokes quv parameters have been normalized by the measured DoP to create 100%
polarized quv points. The measured DoP used to do the normalization is shown in the lower right panel.
All points are shown as functions of the input polarization angle. May data are shown in black. October
data are in orange. November data are in red. December data are in blue. Over the October to May
timeframe, the sun moves across the sky and generates a wide range of input linear polarization angles
(plotted as the x axis). There is a direct functional relationship between the input polarization angle and
the output quv data. The smooth functional relationship (with some outliers to be rejected) illustrates
the mapping between input qu angles and output quv angles on the Poincaré sphere. The demodulation
and 100% DoP scaling has been applied. The <10% measured DoP filter has been applied to reject low
DoP points.
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downward. These two windows were used on alternating days.
The AEOS operators had a mechanical issue discovered only
after our October observing run. The issue was with the window
wheel and caused uncertainty about which window was used on
which day in October. A new motor and computer controlled
wheel rotation were installed between the December and
May runs. We intentionally tested both windows. With operator
confusion and uncertainty for the observing run, wewill treat the
window parameters as unknown in our October measurements.
Certainly the window was fixed in one location on a particular
day, but it could have changed configurations between observ-
ing days.

Several observing runs were done to assess the impact of
changing windows from the BK7 window to the Infrasil win-
dow. Data were collected on several days, often interchanging
windows. Figure 22 shows the measured quv spectra taken in
May where blue represents Infrasil and red represents BK7.
Some data points show deviations from the smooth curves, but
no systematic difference between window substrates is seen.
Outliers from the smooth curves are likely caused by a variety
of observing-related issues and can be easily removed via data
filters.

Appendix C: Sensitivity to Assuming
Polarization Preservation: A Perturbation
Analysis
Another assumption of this method is neglecting consideration
of the first row and first column of the Mueller matrix. These
intensities to/from quv terms can introduce errors. In this sec-
tion, we show a simple sensitivity analysis and demonstrate that
neglecting these terms is a good assumption. The measured

induced polarization and depolarization are low, giving us
some confidence in this assumption. For high reflectivity mir-
rors with low diattenuation, as our mirrors are, the predicted
Mueller matrix first row and column are typically low. Cross-
talk values are 100% while induced polarization is less than
1% to 3%. Our method of fitting the 3 × 3 cross-talk elements
of a Mueller matrix with a rotation matrix is relatively robust
against errors in the first row and column of the Mueller matrix.
The analysis below will show that the 3 × 3 cross-talk elements
of the Mueller matrix are minimally impacted to second-order
when including nonzero elements in the first row and column of
the Mueller matrix.

A Mueller matrix is not a random combination of 16 num-
bers arranged in a square. A Mueller matrix is a group of num-
bers that must transform a Stokes vector into another Stokes
vector through multiplication according to a set of rules that
preserves certain properties of the vector. This means that
any Mueller matrix is a transformation matrix that must belong
to a group of transformations and must behave according to
a set of rules. For instance, a familiar constraint would be
that the Stokes vector cannot have greater than 100% polariza-
tion, expressed as I2 −Q2 −U2 − V2 > 0. This set of rules
means Mueller matrices are part of a group, formally called
SOð1;3Þþ as part of the orthochronous Lorentz group. This
group describes a set of functions that transform Stokes vectors
in a given four-dimensional space. Conveniently, it also pro-
vides many conditions that a Mueller matrix must obey to be
physically realizable. It also provides specific frameworks (tech-
nically, a Lie algebra) for the convenient mathematical analysis
of the Mueller matrix since you can generate any matrix as the
exponential of a few simple constants multiplied by what are
typically called generators. These generators are simple matrices
that can be multiplied by a constant (for instance, a rotation
angle) to define a physically realizable Mueller matrix. With
these generators, we can do error propagation and we can
test for the sensitivity of any approximation to small perturba-
tions. In our method, we write the Mueller matrix in terms of
the Euler angles (α; β; γ) and the generators used to create
the rotation matrix. In our ZXZ convention for Euler angles,
we rotate first about the Z axis, then about the X axis, then
about the Z axis in the rotated coordinates. To compute the
Mueller matrix via exponentials, we use the generators for
rotations about the Z axis and about the X axis.

We use the standard exponential notation to describe
a Mueller matrix as an exponential of the three Euler angles
(di) for i ¼ 1;2; 3: M ¼ expðαS1 þ βS2 þ γS3Þ ¼ expðΣdiSiÞ.
The S matrices describe the standard infinitesimal generators
for rotation for 1 ¼ Z, 2 ¼ X, 3 ¼ Z with the ZXZ convention.
The Z rotation for S1 is often denoted J3 and is

EQ-TARGET;temp:intralink-;e012;326;213

Si ¼ J3 ¼

0
BBB@

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

1
CCCA: (12)

If we write a matrix using this notation for a rotation about the Z
axis by and Euler angle α, we recover a rotation matrix, which is
also the standard form for a circular retarder with a retardance α
via expðαJ3Þ

Fig. 22 The measured sky quv spectra as functions of input AoP for
different coudé windows (BK7 and Infrasil). Blue symbols show the
Infrasil window; red symbols are for the BK7 window substrate. The
telescope was at a pointing of azimuth 330-deg elevation 20 deg.
Similar results are seen at other telescope pointings. The diamonds
showmeasured Stokes q, the triangles showmeasured Stokes u, and
the asterisks show measured Stokes v . All points have been scaled
to 100% DoP and have been demodulated using the + state.
Observations have been minimally filtered using a minimum 15%
measured DoP threshold and a 30% minimum δmax filter to guarantee
a reasonably polarized sky signal (rejecting clouds, obvious outliers,
or highly contaminated data sets). The measured quv points are
consistent between different window substrates, different times, and
different input polarization angles. We consider the two windows to
not limit the calibration precision for this study.
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EQ-TARGET;temp:intralink-;e013;63;752

M ¼ exp

0
BBBB@α

2
66664

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

3
77775

1
CCCCA ¼

0
BBBB@

1 0 0 0

0 cα −sα 0

0 sα cα 0

0 0 0 1

1
CCCCA:

(13)

The standard infinitesimal generator for an X rotation is
denoted J1 and if we rotate by an angle β, we get a Mueller
matrix for a linear retarder via expðβJ1Þ
EQ-TARGET;temp:intralink-;e014;63;630

Mij ¼ exp

0
BBBB@β

2
66664

0 0 0 0

0 0 0 0

0 0 0 −1
0 0 1 0

3
77775

1
CCCCA ¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 cβ −sβ
0 0 sβ cβ

1
CCCCA:

(14)

We can use the same exponential notation for generating IQ
and QI terms of the Mueller matrix using the generator K1 and
a small diattenuation term ϵ. The matrix would be computed
as expðϵK1Þ For this Mueller matrix, we take the approxima-
tion that sinhðϵÞ ∼ ϵ and coshðϵÞ ∼ 1, so the Mueller matrix
simplifies.

EQ-TARGET;temp:intralink-;e015;63;466

Mij ¼ exp

0
BBBB@ϵ

2
66664

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3
77775

1
CCCCA

¼

0
BBBB@

coshðϵÞ sinhðϵÞ 0 0

sinhðϵÞ coshðϵÞ 0 0

0 0 1 0

0 0 0 1

1
CCCCA

¼

0
BBBB@

1 ϵ 0 0

ϵ 1 0 0

0 0 1 0

0 0 0 1

1
CCCCA: (15)

The arbitrary form for the generators can be represented by
the terms applicable to the first row and column of the Mueller
matrix, Ki and the terms corresponding to rotations, Ji. The
full set of generators can be written with a set of infinitessimal
operators (often called boosts) in quv denoted as ζi and a set of
rotations in quv with rotations denoted as θi
EQ-TARGET;temp:intralink-;e016;63;188

Mij ¼ expðζxK1 þ ζyK2 þ ζzK3 þ θxJ1 þ θyJ2 þ θzJ3Þ

¼ exp

0
BBBB@

2
66664

0 ζx ζy ζz

ζx 0 −θz θy

ζy θz 0 −θx
ζz −θy θx 0

3
77775

1
CCCCA: (16)

We can show how errors in the first row and column of the
Mueller matrix propagate into cross-talk elements for quv to

quv. Consider a Mueller matrix of the form Mij ¼ expðϵK1 þ
αS1 þ βS2 þ γS3Þ ¼ expðϵK1 þ ΣdiSiÞ. Using the infinitessi-
mal generators outlined above, and the rotation matrix Rij as
defined in Eq. (3) (in main text) we get a Mueller matrix:
EQ-TARGET;temp:intralink-;e017;326;708

Mij ¼

0
BBBB@

1 ϵ 0 0

ϵ R11 R21 R31

0 R12 R22 R32

0 R13 R23 R33

1
CCCCA: (17)

Each element Rij is part of the rotation matrix, and ϵ is a small
error caused by dichroism in the system. We will neglect the
other dichroism terms (IU and IV) for simplicity. In the limit of
small ϵ, we can derive a sensitivity of the Rij elements to ϵ. Note
that for AEOS, the Rij terms are as large as 1 while the induced
polarization and depolarization terms ϵ are <0.05.

Note that the Euler angles do not commute, and we have an
equation for the Mueller matrix as an exponential of a sum of
terms representing the rotation matrices. We can use the
Zassenhaus formula, which expands noncommuting exponential
functions of sums to an infinite series of terms, similar to other
familiar expansions. The formula below includes the first of the
additional terms and represents the expansion: expðX þ YÞ ¼
expðXÞ expðYÞ expð1

2
½X; Y�Þ. Additional terms grow complex

quickly but have small amplitudes. The next correction to
this equation involves nested commuting: 1

12
½X; ½X; Y�� þ

½Y; ½Y; X��. For our case, the noncommuting terms would be
½X; Y� ¼ ½K1; Si�. We write our Mueller matrix where we denote
the sum of noncommuting rotations expðΣdiSiÞ with Si as the
ZXZ rotation group as a single matrix Rij of the three Euler
angles di ¼ ðα; β; γÞ for i ¼ 1;2; 3.

EQ-TARGET;temp:intralink-;e018;326;392Mij ¼ expð
Z

K1ÞRðα; β; γÞij exp
�
1

2
ð
Z

K1;ΣdiSiÞ
	
: (18)

This gives us three terms multiplied to create the Mueller matrix.
Since ϵ is small, we approximate the first term expðϵK1Þ as
the identity matrix (II) plus an additional term representing
the diattenuation (ϵK1) to first order.
EQ-TARGET;temp:intralink-;e019;326;303

Mij ¼ expðεK1Þ ¼ IIþ ϵK1 ¼

2
66664

1 ϵ 0 0

ϵ 1 0 0

0 0 1 0

0 0 0 1

3
77775: (19)

For the third term representing ½X; Y�, we need to use the
commutation relation ½Xi; Yj� ¼ ϵijkXk where ϵijk is the 3-D
Levi–Civita symbol. The commutation relation for the three
Euler angles (i ¼ 1;2; 3) gives ½K1; Si�ϵijkKk. The Levi–Civita
symbol will be þ1 for the cyclic (1, 2, 3) ordering, adding
the term βK3. The Levi–Civita symbol will be −1 for the anti-
cyclic (1, 3, 2) ordering, adding the term γK2. If we collect
terms and include the proper Euler angles in the sum over
generators ΣdiSi, we find that the term ½K1;ΣdiSi� includes
only ðβK3 − γK2Þ. Therefore, the third term in Eq. (18) for
the Mueller matrix becomes

EQ-TARGET;temp:intralink-;e020;326;99Mij ¼ exp

�
1

2
ðϵK1;ΣdiSiÞ

	
¼ exp

�
ϵ

2
ðβK3 − γK2Þ

	
: (20)

Journal of Astronomical Telescopes, Instruments, and Systems 018001-22 Jan–Mar 2017 • Vol. 3(1)

Harrington, Kuhn, and Ariste: Daytime sky polarization calibration limitations



Using a similar approximation for small ϵ we can write the
½X; Y� term as

EQ-TARGET;temp:intralink-;e021;63;730Mij ¼ exp

�
1

2
ϵðβK3 − γK2Þ

	
∼ IIþ βϵ

2
K3 −

γϵ

2
K2: (21)

Combining the three terms for Eq. (18), we get

EQ-TARGET;temp:intralink-;e022;63;675Mij ¼ ðIIþ ϵK1ÞR
�
IIþ βϵ

2
K3 −

γϵ

2
K2

�
: (22)

Multiplying out this equation and neglecting terms that are ϵ2,
we collect four terms for the Mueller matrix with the original
IQ perturbation ϵ, the Euler angles β, γ and the generators
K1, K2, and K3

EQ-TARGET;temp:intralink-;e023;63;586Mij ¼ R

�
IIþ ϵK1 þ

βϵ

2
K3 −

γϵ

2
K2

�
: (23)

This expression gives the approximation for the Mueller matrix
under our assumptions for small errors ϵ in the polarization to
and from intensity cross-talk level terms of the Mueller matrix.
The Mueller matrix can be represented as a rotation matrix (R)
multiplied by a group of four correction terms. For the case we
examined here, a small error in the QI and IQ terms gives us a
first-order correction to the Mueller matrix. When expanding
out the terms in Eq. (23), we get first-order corrections that
have no impact inside the cross-talk terms R from errors in ϵ.

We can write the first Mueller matrix correction term K1R as
EQ-TARGET;temp:intralink-;e024;63;4310
BBBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCCA

0
BBBB@

1 0 0 0

0 R11 R21 R31

0 R12 R22 R32

0 R13 R23 R33

1
CCCCA

¼

0
BBBB@

0 R11 R12 R13

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCCA: (24)

This term is scaled by ϵ and does not include any terms in the
quv to quv portion of the Mueller matrix. Similar corrections to
the Mueller matrix are seen for the term K2R

EQ-TARGET;temp:intralink-;e025;63;2510
BBBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCCA

0
BBBB@

1 0 0 0

0 R11 R21 R31

0 R12 R22 R32

0 R13 R23 R33

1
CCCCA

¼

0
BBBB@

0 R12 R22 R32

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCCA: (25)

A similar Mueller matrix correction would be generated for the
K3 term. From these corrections to the Mueller matrices in
Eqs. (24) and (25), we see that there is no correction in the
rotation matrix terms R due to this first-order approximation.

In the limit of small ϵ, we see that neglecting the IQ and QI
terms only impacts the first row of the Mueller matrix. From
this sensitivity analysis, we can conclude that our method of
approximating the 3 × 3 cross-talk elements of the Mueller
matrix as a rotation matrix is relatively insensitive to errors in
the first row and column of the Mueller matrix. Corrections to
M to first-order in ϵ as above only affect the intensity to polari-
zation terms (the dichroism in M). The rotation matrix fit
terms are second-order in ϵ and, as such, have errors much
smaller than other typical limiting noise sources. For AEOS
and HiVIS, the cross-talk terms are of order 1. The induced
polarization and depolarization terms are of order 5%. The sec-
ond-order corrections from neglecting the first row and column
in the rotation matrix fitting are thus of order ϵ ∼ 0.052, which is
2.5 × 10−3. The method of fitting rotation matrices to the cross-
talk elements of the Mueller matrix is robust against dichroism
type errors in induced polarization and depolarization.

Acknowledgments
Dr. Harrington acknowledges support from the InnoPol (Grant
No. SAW-2011-KIS-7) from Leibniz Association, Germany,
and from the European Research Council Advanced Grant
HotMol (ERC-2011-AdG 291659) during the period 2013 to
2015 for this work. Dr. Kuhn acknowledges the NSF-AST
DKIST/CryoNIRSP program. This program was partially sup-
ported by the Air Force Research Laboratory (AFRL) through
partial salary support for Dr. Harrington until October 2015.
This work made use of the Dave Fanning and Markwardt
IDL libraries.

References
1. J.-C. Hsu and M. Breger, “On standard polarized stars,” Astrophys. J.

262, 732–738 (1982).
2. R. Gil-Hutton and P. Benavidez, “Southern stars that can be used as

unpolarized standards,” Mon. Not. R. Astron. Soc. 345, 97–99 (2003).
3. L. Fossati et al., “Standard stars for linear polarization observed with

FORS1,” in The Future of Photometric, Spectrophotometric and
Polarimetric Standardization, Vol. 364, p. 503 (2007).

4. H. Socas-Navarro et al., “Characterization of telescope polarization
properties across the visible and near-infrared spectrum. Case
study: the Dunn solar telescope,” Astron. Astrophys. 531, A2 (2011).

5. H. Socas-Navarro et al., “Spinor: visible and infrared spectro-polarim-
etry at the national solar observatory,” Sol. Phys. 235, 55–73 (2006).

6. H. Socas-Navarro et al., “High precision polarimetry with the
advanced technology solar telescope,” Proc. SPIE 5901, 590105
(2005).

7. H. Socas-Navarro, “Polarimetric calibration of large-aperture tele-
scopes. II. Subaperture method,” Opt. Soc. Am. J. 22, 907 (2005).

8. H. Socas-Navarro, “Polarimetric calibration of large-aperture tele-
scopes. I. Beam-expansion method,” Opt. Soc. Am. J. 22, 539 (2005).

9. J. R. Kuhn et al., “Removing instrumental polarization from infrared
solar polarimetric observations,” Sol. Phys. 153, 143–155 (1994).

10. D. F. Elmore et al., “Utilization of redundant polarized solar spectra to
infer the polarization properties of the new generation of large aperture
solar telescopes,” Proc. SPIE 7735, 77354E (2010).

11. J. Sánchez Almeida, V. Martinez Pillet, and A. D. Wittmann, “The
instrumental polarization of a Gregory-Coude telescope,” Sol. Phys.
134, 1–13 (1991).

12. E. Giro et al., “Polarization properties at the Nasmyth focus of the
alt-azimuth TNG telescope,” Proc. SPIE 4843, 456 (2003).

13. F. Patat and M. Romaniello, “Error analysis for dual-beam optical
linear polarimetry,” Publ. Astron. Soc. Pac. 118, 146–161 (2006).

14. J. Tinbergen, “Accurate optical polarimetry on the Nasmyth platform,”
Publ. Astron. Soc. Pac. 119, 1371–1384 (2007).

15. F. Joos et al., “Reduction of polarimetric data using Mueller calculus
applied to Nasmyth instruments,” Proc. SPIE 7016, 70161I (2008).

Journal of Astronomical Telescopes, Instruments, and Systems 018001-23 Jan–Mar 2017 • Vol. 3(1)

Harrington, Kuhn, and Ariste: Daytime sky polarization calibration limitations

http://dx.doi.org/10.1086/160467
http://dx.doi.org/10.1046/j.1365-8711.2003.06957.x
http://dx.doi.org/10.1051/0004-6361/201015804
http://dx.doi.org/10.1007/s11207-006-0020-x
http://dx.doi.org/10.1117/12.616000
http://dx.doi.org/10.1364/JOSAA.22.000907
http://dx.doi.org/10.1364/JOSAA.22.000539
http://dx.doi.org/10.1007/BF00712497
http://dx.doi.org/10.1117/12.857061
http://dx.doi.org/10.1007/BF00148738
http://dx.doi.org/10.1117/12.458607
http://dx.doi.org/10.1086/pasp.2006.118.issue-839
http://dx.doi.org/10.1086/509224
http://dx.doi.org/10.1117/12.788915


16. G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of
real aluminum mirrors, I. Influence of the aluminum oxide layer,”
Publ. Astron. Soc. Pac. 121, 377–383 (2009).

17. R. Roelfsema et al., “The ZIMPOL high-contrast imaging polarimeter
for SPHERE: design, manufacturing, and testing,” Proc. SPIE 7735,
77354B (2010).

18. K. Ichimoto et al., “Polarization calibration of the solar optical tele-
scope onboard Hinode,” Sol. Phys. 249, 233–261 (2008).

19. B. W. Lites et al., “The Hinode spectro-polarimeter,” Sol. Phys. 283,
579–599 (2013).

20. P. G. Judge et al., “Evaluation of seeing-induced cross talk in tip-tilt-
corrected solar polarimetry,” Appl. Opt. 43, 3817 (2004).

21. J. Sánchez Almeida, “Instrumental polarization in the focal plane of
telescopes. 2: effects induced by seeing,” Astron. Astrophys. 292,
713–721 (1994).

22. J. Sánchez Almeida and V. Martinez Pillet, “Instrumental polarization in
the focal plane of telescopes,” Astron. Astrophys. 260, 543–555 (1992).

23. M. Stangalini et al., “The effects of AO systems on polarized light,”
Proc. SPIE 9148, 91486P (2014).

24. D. Harrington et al., “InnoPOL: an EMCCD imaging polarimeter and
85-element curvature AO system on the 3.6-m AEOS telescope for
cost effective polarimetric speckle suppression,” Proc. SPIE 9147,
91477C (2014).

25. M. van Noort, “Spatially coupled inversion of spectro-polarimetric
image data,” Astron. Astrophys. 548, A5–A14 (2012).

26. M. De Juan Ovelar et al., “Modeling the instrumental polarization of
the VLT and E-ELT telescopes with the M&m’s code,” Proc. SPIE
8449, 844912 (2012).

27. D. M. Harrington, J. R. Kuhn, and K. Whitman, “The new HiVIS
spectropolarimeter and spectropolarimetric calibration of the AEOS
telescope,” Publ. Astron. Soc. Pac. 118, 845–859 (2006).

28. G. Barrick, T. Benedict, and D. Sabin, “Correcting polarization cross-
talk in the ESPaDOnS spectro-polarimeter,” Proc. SPIE 7735, 77354C
(2010).

29. G. Barrick and T. Benedict, “Experimental results from using two
laminated film polarizers to make absolute measurements of polariza-
tion crosstalk in an optic,” Proc. SPIE 7735, 773548 (2010).

30. D. M. Harrington et al., “Correcting systematic polarization effects in
Keck LRISp spectropolarimetry to 0.05 percent,” Publ. Astron. Soc.
Pac. 127, 757–775 (2015).

31. D. Harrington, J. R. Kuhn, and R. Nevin, “Calibrating and stabilizing
spectropolarimeters with charge shuffling and daytime sky measure-
ments,” Astron. Astrophys. 578, A126 (2015).

32. J. P. McMullin et al., “Construction status of the Daniel K. Inouye solar
telescope,” Proc. SPIE 9145, 914525 (2014).

33. S. L. Keil et al., “ATST: the largest polarimeter,” in Solar Polarization
6. Proc. of a Conf. Held in Maui, Vol. 437, p. 319 (2011).

34. T. R. Rimmele et al., “Instrumentation for the advanced technology
solar telescope,” Proc. SPIE 5492, 944 (2004).

35. D. F. Elmore, S. R. Sueoka, and R. Casini, “Performance of polariza-
tion modulation and calibration optics for the Daniel K. Inouye solar
telescope,” Proc. SPIE 9147, 91470F (2014).

36. D. F. Elmore et al., “The Daniel K. Inouye solar telescope first light
instruments and critical science plan,” Proc. SPIE 9147, 914707
(2014).

37. W. Schmidt et al., “A two-dimensional spectropolarimeter as a first-
light instrument for the Daniel K. Inouye solar telescope,” Proc.
SPIE 9147, 91470E (2014).

38. S. R. Sueoka, R. A. Chipman, and D. F. Elmore, “Characterization of
DKIST retarder components with polarization ray tracing,” Proc. SPIE
9293, 929308 (2014).

39. W. H. Schubert, E. Petrak, and T. G. Baur, “Measurement of polari-
zation assemblies for the Daniel K. Inouye solar telescope,” Proc.
SPIE 9369, 93690N (2015).

40. A. G. de Wijn, “Preliminary design of the visible spectro-polarimeter
for the advanced technology solar telescope,” Proc. SPIE 8446,
84466X (2012).

41. A. G. de Wijn et al., “The polychromatic polarization modulator,”
Proc. SPIE 7735, 77354A (2010).

42. J. Sánchez-Capuchino et al., “Current concept for the 4m European
Solar Telescope (EST) optical design,” Proc. SPIE 7652, 76520S
(2010).

43. F. C. M. Bettonvil et al., “The polarization optics for the European
Solar Telescope,” in Solar Polarization 6. Proc. of a Conf. Held in
Maui, Vol. 437, p. 329 (2011).

44. F. C. M. Bettonvil et al., “The polarization optics for the European
Solar Telescope (EST),” Proc. SPIE 7735, 77356I (2010).

45. M. Collados et al., “European Solar Telescope: project status,” Proc.
SPIE 7733, 77330H (2010).

46. E. Collett, Polarized Light. Fundamentals and Applications, Vol. 1,
CRC Press (1992).

47. D. Clarke, Stellar Polarimetry, CLARKE:STELLAR POLARIS
O-BK, John Wiley & Sons, Weinheim, Germany (2009).

48. K. L. Coulson, “Characteristics of skylight at the zenith during twilight
as indicators of atmospheric turbidity. 1: degree of polarization,” Appl.
Opt. 19, 3469 (1980).

49. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere,
A Deepak Publication (1988).

50. G. Horvath et al., “First observation of the fourth neutral polarization
point in the atmosphere,” Opt. Soc. Am. J. 19, 2085 (2002).

51. G. Horváth, I. Pomozi, and J. Gál, “Neutral points of skylight polari-
zation observed during the total eclipse on 11 August 1999,” Appl.
Opt. 42, 465 (2003).

52. H. Horvath, “Basic optics, aerosol optics, and the role of scattering
for sky radiance,” J. Quant. Spectrosc. Radiat. Transfer 139, 3–12
(2014).

53. R. L. Lee, “Digital imaging of clear-sky polarization,” Appl. Opt. 37,
1465 (1998).

54. Y. Liu and K. Voss, “Polarized radiance distribution measurement of
skylight. II. Experiment and data,” Appl. Opt. 36, 8753 (1997).

55. B. Suhai and G. Horváth, “How well does the Rayleigh model
describe the E-vector distribution of skylight in clear and cloudy
conditions? A full-sky polarimetric study,” Opt. Soc. Am. J. 21, 1669
(2004).

56. J. Gál et al., “Polarization of the moonlit clear night sky measured by
full-sky imaging polarimetry at full Moon: comparison of the polari-
zation of moonlit and sunlit skies,” J. Geophys. Res. 106, 22647–
22653 (2001).

57. J. Gál et al., “Polarization patterns of the summer sky and its neutral
points measured by full-sky imaging polarimetry in Finnish Lapland
north of the Arctic Circle,” in Royal Society of London Proc. Series A,
p. 1385, The Royal Society (2001).

58. A. Vermeulen, C. Devaux, and M. Herman, “Retrieval of the scattering
and microphysical properties of aerosols from ground-based optical
measurements including polarization. I. Method,” Appl. Opt. 39,
6207 (2000).

59. L. Li et al., “A method to calculate Stokes parameters and angle of
polarization of skylight from polarized CIMEL sun/sky radiometers,”
J. Quant. Spectrosc. Radiat. Transfer 149, 334–346 (2014).

60. Z. Li et al., “Improvements for ground-based remote sensing of atmos-
pheric aerosol properties by additional polarimetric measurements,”
J. Quant. Spectrosc. Radiat. Transfer 110, 1954–1961 (2009).

61. S. Liang and P. Lewis, “A parametric radiative transfer model for sky
radiance distribution,” J. Quant. Spectrosc. Radiat. Transfer 55(2),
181–189 (1996).

62. I. Pomozi, G. Horváth, and R. Wehner, “How the clear-sky angle of
polarization pattern continues underneath clouds: full-sky measure-
ments and implications for animal orientation,” J. Exp. Biol. 204,
2933–2942 (2001).

63. T. W. Cronin, E. J. Warrant, and B. Greiner, “Celestial polarization
patterns during twilight,” Appl. Opt. 45, 5582 (2006).

64. T. W. Cronin, E. J. Warrant, and B. Greiner, “Polarization patterns of
the twilight sky,” Proc. SPIE 5888, 58880R (2005).

65. R. Hegedüs, S. Åkesson, and G. Horváth, “Anomalous celestial polari-
zation caused by forest fire smoke: why do some insects become
visually disoriented under smoky skies?” Appl. Opt. 46, 2717 (2007).

66. M. V. Berry, M. R. Dennis, and R. L. J. Lee, “Polarization singularities
in the clear sky,” New J. Phys. 6, 162–162 (2004).

67. P. Litvinov et al., “Reflection models for soil and vegetation surfaces
from multiple-viewing angle photopolarimetric measurements,”
J. Quant. Spectrosc. Radiat. Transfer 111(4), 529–539 (2010).

68. J. Peltoniemi et al., “Polarised bidirectional reflectance factor measure-
ments from soil, stones, and snow,” J. Quant. Spectrosc. Radiat.
Transfer 110(17), 1940–1953 (2009).

Journal of Astronomical Telescopes, Instruments, and Systems 018001-24 Jan–Mar 2017 • Vol. 3(1)

Harrington, Kuhn, and Ariste: Daytime sky polarization calibration limitations

http://dx.doi.org/10.1086/597155
http://dx.doi.org/10.1117/12.857045
http://dx.doi.org/10.1007/s11207-008-9169-9
http://dx.doi.org/10.1007/s11207-012-0206-3
http://dx.doi.org/10.1364/AO.43.003817
http://dx.doi.org/10.1117/12.2056470
http://dx.doi.org/10.1117/12.2056667
http://dx.doi.org/10.1051/0004-6361/201220220
http://dx.doi.org/10.1117/12.926588
http://dx.doi.org/10.1086/pasp.2006.118.issue-844
http://dx.doi.org/10.1117/12.856084
http://dx.doi.org/10.1117/12.856085
http://dx.doi.org/10.1086/682323
http://dx.doi.org/10.1086/682323
http://dx.doi.org/10.1051/0004-6361/201322791
http://dx.doi.org/10.1117/12.2055483
http://dx.doi.org/10.1117/12.551853
http://dx.doi.org/10.1117/12.2054610
http://dx.doi.org/10.1117/12.2057038
http://dx.doi.org/10.1117/12.2056322
http://dx.doi.org/10.1117/12.2056322
http://dx.doi.org/10.1117/12.2071279
http://dx.doi.org/10.1117/12.2077749
http://dx.doi.org/10.1117/12.2077749
http://dx.doi.org/10.1117/12.926497
http://dx.doi.org/10.1117/12.857745
http://dx.doi.org/10.1117/12.871604
http://dx.doi.org/10.1117/12.857817
http://dx.doi.org/10.1117/12.856994
http://dx.doi.org/10.1117/12.856994
http://dx.doi.org/10.1364/AO.19.003469
http://dx.doi.org/10.1364/AO.19.003469
http://dx.doi.org/10.1364/JOSAA.19.002085
http://dx.doi.org/10.1364/AO.42.000465
http://dx.doi.org/10.1364/AO.42.000465
http://dx.doi.org/10.1016/j.jqsrt.2013.08.009
http://dx.doi.org/10.1364/AO.37.001465
http://dx.doi.org/10.1364/AO.36.008753
http://dx.doi.org/10.1364/JOSAA.21.001669
http://dx.doi.org/10.1029/2000JD000085
http://dx.doi.org/10.1364/AO.39.006207
http://dx.doi.org/10.1016/j.jqsrt.2014.09.003
http://dx.doi.org/10.1016/j.jqsrt.2009.04.009
http://dx.doi.org/10.1016/0022-4073(95)00155-7
http://dx.doi.org/10.1364/AO.45.005582
http://dx.doi.org/10.1117/12.613053
http://dx.doi.org/10.1364/AO.46.002717
http://dx.doi.org/10.1088/1367-2630/6/1/162
http://dx.doi.org/10.1016/j.jqsrt.2009.11.001
http://dx.doi.org/10.1016/j.jqsrt.2009.04.008
http://dx.doi.org/10.1016/j.jqsrt.2009.04.008


69. X. He et al., “Avector radiative transfer model of coupled ocean-atmos-
phere system using matrix-operator method for rough sea-surface,” J.
Quant. Spectrosc. Radiat. Transfer 111(10), 1426–1448 (2010).

70. S. Salinas and S. Liew, “Light reflection from a rough liquid surface
including wind-wave effects in a scattering atmosphere,” J. Quant.
Spectrosc. Radiat. Transfer 105(3), 414–424 (2007).

71. Y. Ota et al., “Matrix formulations of radiative transfer including the
polarization effect in a coupled atmosphere-ocean system,” J. Quant.
Spectrosc. Radiat. Transfer 111, 878–894 (2010).

72. V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water
surface in numerical methods for solving the radiative transfer
equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004).

73. B. Wu and Y. Jin, “Twilight polarization and optical depth of strato-
spheric aerosols over Beijing after the Pinatubo volcanic eruption,”
Appl. Opt. 36, 7009 (1997).

74. G. van Harten et al., “Atmospheric aerosol characterization with a
ground-based SPEX spectropolarimetric instrument,” Atmos. Meas.
Tech. 7, 4341–4351 (2014).

75. A. K. Shukurov and K. A. Shukurov, “Field studies of the correlation
between the atmospheric aerosol content and the light polarization at
the zenith of the daytime sky,” Izvestiya 42, 68–73 (2006).

76. O. S. Ougolnikov and I. A. Maslov, “Wide-angle polarimetry of the
night sky: measurements of atmospheric glow and zodiacal light,”
Cosmic Res. 43, 17–24 (2005).

77. O. S. Ougolnikov and I. A. Maslov, “Multicolor polarimetry of
the twilight sky: the role of multiple light scattering as a function of
wavelength,” Cosmic Res. 40, 224–232 (2002).

78. O. Ougolnikov and I. Maslov, “Polarization studies of contribution
of aerosol scattering to the glow of twilight sky,” Cosmic Res.
43(6), 404–412 (2005).

79. O. S. Ugolnikov, “Twilight sky photometry and polarimetry: the
problem of multiple scattering at the twilight time,” Kosm. Issled.
37, 168–175 (1999).

80. O. S. Ugolnikov and I. A. Maslov, “Scattering function of tropospheric
aerosol according to the data of polarimetry of the twilight and night
sky background,” Cosmic Res. 49, 187–193 (2011).

81. O. S. Ugolnikov and I. A. Maslov, “Optical properties of the undis-
turbed mesosphere from wide-angle twilight sky polarimetry,”
Cosmic Res. 51, 235–240 (2013).

82. O. S. Ugolnikov and I. A. Maslov, “Studies of the stratosphere aerosol
layer based on polarization measurements of the twilight sky,” Cosmic
Res. 47, 198–207 (2009).

83. E. Boesche et al., “Polarization of skylight in the O2A band: effects of
aerosol properties,” Appl. Opt. 47, 3467 (2008).

84. E. Boesche et al., “Effect of aerosol microphysical properties on polari-
zation of skylight: sensitivity study and measurements,” Appl. Opt. 45,
8790 (2006).

85. J. Zeng, Q. Han, and J. Wang, “High-spectral resolution simulation of
polarization of skylight: sensitivity to aerosol vertical profile,”
Geophys. Res. Lett. 35, L20801 (2008).

86. I. Aben, D. M. Stam, and F. Helderman, “The ring effect in skylight
polarization,” Geophys. Res. Lett. 28, 519–522 (2001).

87. I. Aben et al., “Spectral fine-structure in the polarization of skylight,”
Geophys. Res. Lett. 26, 591–594 (1999).

88. N. Pust and J. A. Shaw, “Imaging spectropolarimetry of cloudy skies,”
Proc. SPIE 6240, 624006 (2006).

89. N. J. Pust and J. A. Shaw, “How good is a single-scattering model of
visible-NIR atmospheric skylight polarization?” Proc. SPIE 7461,
74610B (2009).

90. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of
partly cloudy skies,” Appl. Opt. 47, H190–H198 (2008).

91. N. J. Pust and J. A. Shaw, “All-sky polarization imaging,” Proc. SPIE
6682, 668204 (2007).

92. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid
crystal variable retarders,” Appl. Opt. 45, 5470 (2006).

93. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter for studying
the effect of clouds on sky and target polarization,” Proc. SPIE 5888,
588812 (2005).

94. J. A. Shaw et al., “Continuous outdoor operation of an all-sky polari-
zation imager,” Proc. SPIE 7672, 76720A (2010).

95. R. Swindle, “Towards improved diagnostics in terrestrial and solar
spectropolarimetry,” MS Thesis [PhD thesis], University of Hawai’i
at Manoa (2014).

96. R. Swindle and J. R. Kuhn, “Haleakalā sky polarization: full-sky
observations and modeling,” Publ. Astron. Soc. Pac. 127(956),
1061–1076 (2015).

97. O. S. Ugolnikov, O. V. Postylyakov, and I. A. Maslov, “Effects of multi-
ple scattering and atmospheric aerosol on the polarization of the twilight
sky,” J. Quant. Spectrosc. Radiat. Transfer 88, 233–241 (2004).

98. M. P. Fetrow et al., “Results of a new polarization simulation,” Proc.
SPIE 4481, 149 (2002).

99. A. Berk et al., “MODTRAN5: 2006 update,” Proc. SPIE 6233,
62331F (2006).

100. D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope
Mueller matrices using daytime sky polarization observations,”
Publ. Astron. Soc. Pac. 123, 799–811 (2011).

101. D. M. Harrington et al., “Achromatizing a liquid-crystal spectropo-
larimeter: retardance vs. Stokes-based calibration of HiVIS,” Publ.
Astron. Soc. Pac. 122, 420–438 (2010).

102. C. R. Givens and A. B. Kostinski, “A simple necessary and sufficient
condition on physically realizable Mueller matrices,” J. Mod. Opt. 40,
471–481 (1993).

103. A. B. Kostinski, C. R. Givens, and J. M. Kwiatkowski, “Constraints on
Mueller matrices of polarization optics,” Appl. Opt. 32, 1646 (1993).

104. Y. Takakura and M.-P. Stoll, “Passivity test of Mueller matrices in
the presence of additive Gaussian noise,” Appl. Opt. 48, 1073 (2009).

105. A. Adhikari, K. Dev, and A. Asundi, “Subwavelength metrological
characterization by Mueller matrix polarimeter and finite difference
time domain method,” Opt. Lasers Eng. 86, 242–247 (2016).

106. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent
method for the calibration of polarization modulators, polarimeters,
and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490 (1999).

107. J. C. del Toro Iniesta, Introduction to Spectropolarimetry Cambridge
University Press, Cambridge (2003).

108. J. C. del Toro Iniesta and M. Collados, “Optimum modulation and
demodulation matrices for solar polarimetry,” Appl. Opt. 39, 1637 (2000).

109. A. de Martino et al., “Optimized Mueller polarimeter with liquid
crystals,” Opt. Lett. 28, 616 (2003).

110. K. Nagaraju et al., “An efficient modulation scheme for dual beam
polarimetry,” Bull. Astron. Soc. India 35, 307 (2007).

111. S. Tomczyk et al., “Wavelength-diverse polarization modulators for
Stokes polarimetry,” Appl. Opt. 49, 3580–3586 (2010).

112. P. G. Nelson et al., “The visible spectro-polarimeter (ViSP) for the
advanced technology solar telescope,” Proc. SPIE 7735, 77358C (2010).

113. F. Snik et al., “Design of a full-Stokes polarimeter for VLT/X-shooter,”
Proc. SPIE 8446, 844625 (2012).

114. A. G. de Wijn et al., “The polychromatic polarization modulator,”
Ground-based and Airborne Instrumentation for Astronomy III Ed.,
pp. 7735, 143 (2010).

115. A. G. D. Wijn et al., “Wavelength-diverse polarization modulators for
Stokes polarimetry,” Solar Polarization 6. Proc. of a Conf. Held in
Maui, Vol. 437, p. 413 (2011).

116. D. Gisler, A. Feller, and A. M. Gandorfer, “Achromatic liquid crystal
polarisation modulator,” Proc. SPIE 4843, 45 (2003).

117. Y. Hanaoka, “Ferroelectric liquid crystal polarimeter for high-cadence
Hα imaging polarimetry,” Sol. Phys. 222, 265–278 (2004).

118. C. Xu et al., “Polarimeter with two ferroelectric liquid-crystal modu-
lators attached to the Yunnan solar tower,” Appl. Opt. 45, 8428 (2006).

119. A. R. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflec-
tance on skylight polarization measurements at the Mauna Loa
observatory,” Opt. Express 19, 16008–16021 (2011).

120. A. R. Dahlberg, N. J. Pust, and J. A. Shaw, “All-sky imaging polar-
imeter measurements of visible and NIR skylight at Mauna Loa,
Hawaii,” Proc. SPIE 7461, 746107 (2009).

121. D. M. Harrington and J. R. Kuhn, “Spectropolarimetric observations of
Herbig Ae/Be stars. I. HiVIS spectropolarimetric calibration and
reduction techniques,” Publ. Astron. Soc. Pac. 120, 89–117 (2008).

Biographies for the authors are not available.

Journal of Astronomical Telescopes, Instruments, and Systems 018001-25 Jan–Mar 2017 • Vol. 3(1)

Harrington, Kuhn, and Ariste: Daytime sky polarization calibration limitations

http://dx.doi.org/10.1016/j.jqsrt.2010.02.014
http://dx.doi.org/10.1016/j.jqsrt.2010.02.014
http://dx.doi.org/10.1016/j.jqsrt.2007.01.051
http://dx.doi.org/10.1016/j.jqsrt.2007.01.051
http://dx.doi.org/10.1016/j.jqsrt.2009.11.021
http://dx.doi.org/10.1016/j.jqsrt.2009.11.021
http://dx.doi.org/10.1016/S0022-4073(03)00236-X
http://dx.doi.org/10.1364/AO.36.007009
http://dx.doi.org/10.5194/amt-7-4341-2014
http://dx.doi.org/10.5194/amt-7-4341-2014
http://dx.doi.org/10.1134/S0001433806010063
http://dx.doi.org/10.1007/s10604-005-0015-7
http://dx.doi.org/10.1023/A:1015920819478
http://dx.doi.org/10.1007/s10604-005-0064-y
http://dx.doi.org/10.1134/S0010952511030105
http://dx.doi.org/10.1134/S0010952513040084
http://dx.doi.org/10.1134/S0010952509030022
http://dx.doi.org/10.1134/S0010952509030022
http://dx.doi.org/10.1364/AO.47.003467
http://dx.doi.org/10.1364/AO.45.008790
http://dx.doi.org/10.1029/2008GL035645
http://dx.doi.org/10.1029/2000GL011901
http://dx.doi.org/10.1029/1999GL900025
http://dx.doi.org/10.1117/12.670612
http://dx.doi.org/10.1117/12.828343
http://dx.doi.org/10.1364/AO.47.00H190
http://dx.doi.org/10.1117/12.736330
http://dx.doi.org/10.1364/AO.45.005470
http://dx.doi.org/10.1117/12.618773
http://dx.doi.org/10.1117/12.851374
http://dx.doi.org/10.1086/683177
http://dx.doi.org/10.1016/j.jqsrt.2003.12.033
http://dx.doi.org/10.1117/12.452902
http://dx.doi.org/10.1117/12.452902
http://dx.doi.org/10.1117/12.665077
http://dx.doi.org/10.1086/660894
http://dx.doi.org/10.1086/651621
http://dx.doi.org/10.1086/651621
http://dx.doi.org/10.1080/09500349314550471
http://dx.doi.org/10.1364/AO.32.001646
http://dx.doi.org/10.1364/AO.48.001073
http://dx.doi.org/10.1016/j.optlaseng.2016.06.014
http://dx.doi.org/10.1364/AO.38.003490
http://dx.doi.org/10.1364/AO.39.001637
http://dx.doi.org/10.1364/OL.28.000616
http://dx.doi.org/10.1364/AO.49.003580
http://dx.doi.org/10.1117/12.857610
http://dx.doi.org/10.1117/12.926163
http://dx.doi.org/10.1117/12.857745
http://dx.doi.org/10.1117/12.458835
http://dx.doi.org/10.1023/B:SOLA.0000043581.05390.2f
http://dx.doi.org/10.1364/AO.45.008428
http://dx.doi.org/10.1364/OE.19.016008
http://dx.doi.org/10.1117/12.826537
http://dx.doi.org/10.1086/528881

