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Abstract. We report a second derivative multispectral algorithm for quantitative assessment of cutaneous tissue
oxygen saturation (StO2). The algorithm is based on a forward model of light transport in multilayered skin tissue
and an inverse algorithm for StO2 reconstruction. Based on the forward simulation results, a parameter of a
second derivative ratio (SDR) is derived as a function of cutaneous tissue StO2. The SDR function is optimized
at a wavelength set of 544, 552, 568, 576, 592, and 600 nm so that cutaneous tissue StO2 can be derived with
minimal artifacts by blood concentration, tissue scattering, and melanin concentration. The proposed multispec-
tral StO2 imaging algorithm is verified in both benchtop and in vivo experiments. The experimental results show
that the proposed multispectral imaging algorithm is able to map cutaneous tissue StO2 in high temporal res-
olution with reduced measurement artifacts induced by different skin conditions in comparison with other three
commercial tissue oxygen measurement systems. These results indicate that the multispectral StO2 imaging
technique has the potential for noninvasive and quantitative assessment of skin tissue oxygenation with
a high temporal resolution. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.3.036001]
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1 Introduction
Tissue oxygen saturation (StO2) is a relative measure of the
amount of oxygen carried by hemoglobin in biological tissue.
Measuring StO2 will provide important information about tissue
viability and help clinicians to make critical decisions in many
clinical procedures, such as wound healing management, plastic
surgery, and organ transplantation. Various methods, such as
blood oxygen level dependent magnetic resonance imaging,
pulse oximetry, phosphorescence, electroparamagnetic reso-
nance, and microelectrode, have been used for detecting tissue
oxygen content and hemodynamics.1–3 Among these oximetry
techniques, optical oximetry is able to monitor tissue StO2 con-
tinuously and noninvasively by detecting characteristic spectra
of oxy-hemoglobin and deoxy-hemoglobin.4 Commonly used
optical oximetry devices are based on contact and single-
point measurements of spectral reflectance or transmission in
the visible and near-infrared wavelength ranges.2,5–8 This oper-
ation mode may not be suitable for some clinical applications
where a sterile environment is required. For example, chronic
wound management requires the accurate assessment of
wound margin and appropriate detection of tissue viability with-
out contamination to the disease area. Therefore, a noncontact
method is preferred for cutaneous tissue StO2 assessment. In
addition, tissue StO2 assessment in an imaging mode offers sev-
eral clinical advantages over that of single-point detection.
Considering that StO2 varies spatially in not only suspicious
lesions but also healthy tissues,9–12 imaging tissue StO2 distri-
bution will help to characterize tissue heterogeneities, identify
embedded lesions, and guide therapeutic procedures. Multiple
multispectral, hyperspectral, and other advanced imaging

techniques have been investigated in recent years for noncontact
imaging of skin tissue StO2.

13–17 These techniques collect skin
tissue reflectance at multiple wavelengths, unmix the absorption
components of oxy-hemoglobin and deoxy-hemoglobin, and
derive the tissue StO2 map by various reconstruction algo-
rithms.15,18,19 However, tissue StO2 maps acquired by various
optical oximetry techniques are only relative indicators of tissue
metabolism and viability. Accurate interpretation of tissue opti-
cal properties into absolute oxygenation levels is challenged by
many experimental, physical, and biological limitations.20–22 In
this paper, we define various sources that cause deviations of the
measured StO2 values away from their actual values as artifacts.
A variety of artifacts contribute to the lack of accuracy in tissue
StO2 measurements. The static artifacts introduce bias in StO2

measurements. The dynamic artifacts (including motion arti-
facts) introduce temporal variations and fluctuations in StO2

measurements. The static artifacts can be further divided into
at least three categories. First, the physical principle limitations
for an optical oximetry technique, such as the scattering of
light in biologic tissue and the wavelength-dependent depth of
light penetration in tissue, hinder the accurate interpretation of
physiologic parameters from optical measurements. Second,
variations in imaging hardware and test conditions, such as non-
uniform illumination and specular reflectance conditions, intro-
duce further artifacts in StO2 measurement. Finally, intrapatient
and interpatient variations in tissue physiologic conditions and
chromophore concentrations also significantly affect the accu-
racy of StO2 imaging. For example, skin pigments and chromo-
phores other than oxy-hemoglobin and deoxy-hemoglobin
contribute to heterogeneous background absorption at different
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skin sites and interpatient variation in skin color.21 Previous
studies also show that oxy-hemoglobin, deoxy-hemoglobin,
and scattering vary significantly for patients in different ethnic
groups or for the same patient at different skin sites.23,24 In this
paper, we focus on a multispectral imaging algorithm that may
effectively reduce the StO2 mapping artifacts introduced by
other skin chromophores. At the current status of research,
we have not studied the systemic methods for effective elimina-
tion of motion artifacts and other types of artifacts yet.

In an effort to minimize the artifacts for cutaneous tissue
StO2 measurement, various algorithms have been explored.
Seo et al. used a linear model of oxy-hemoglobin and deoxy-
hemoglobin with a modulation of scattering and melanin to
approximate the absorption spectrum of skin tissue in the wave-
length range from 520 to 585 nm.25 Stamatas et al. calculated
the melanin concentration, corrected the absorption spectrum,
and then it fitted into the absorption spectra of oxy-hemoglobin
and deoxy-hemoglobin.26,27 Mansfield et al. analyzed the skin
reflectance spectrum by fuzzy C-means clustering and then
applied a four-term linear regression fitting with oxy-hemoglo-
bin, deoxy-hemoglobin, offset, and slope terms.28–30 Sowa et al.
reduced the bias from melanin by applying an orthogonal sub-
space projection method for hyperspectral image classifica-
tion.31,32 Nishidate et al. determined the optical path lengths
of different absorbers by inverse Monte Carlo simulation and
applied the results to a multiple regression algorithm to find
the fitting coefficients for oxy-hemoglobin, deoxy-hemoglobin,
and melanin.33 Jakovels and Spigulis used multiple Gaussian
and exponential functions to fit the absorption spectra for
oxy-hemoglobin, deoxy-hemoglobin, and melanin, and then
approximated the skin tissue optical density spectrum from
500 to 700 nm by nonlinear least square approximation.15

Despite these advances, no systemic study has been carried out
for quantitative study and evaluation of reliable algorithms for
cutaneous tissue StO2 measurement at different skin conditions.
Consequently, many existing hyperspectral and multispectral
imaging devices can only provide relative information about
tissue StO2 vulnerable to skin conditions.

This paper reports a multispectral algorithm for noncontact,
quantitative and high temporal resolution imaging of cutaneous
tissue StO2 with reduced measurement artifacts in comparison
with conventional imaging methods. The multispectral algo-
rithm is studied numerically in a simplified skin tissue model
that only considers lipid and primary chromophores, such as
oxy-hemoglobin, deoxy-hemoglobin, and melanin. Other chro-
mophores, such as glucose, keratin, and bilirubin, are neglected
at the current stage of research. The algorithm is also validated
experimentally in a phantom system that consists of whole
blood, lipid, and India ink. India ink is used to simulate different
skin types since it has been adopted by many researchers to
mimic the absorption properties of melanin.34,35 In Sec. 2.1,
reflectance spectra of skin tissue at different StO2, scattering,
blood, and melanin conditions are simulated by an empirical
light transport model with a semi-infinite boundary condition.
A parameter of the second derivative ratio (SDR) is derived
as the function of tissue StO2 based on the simulated reflectance
spectra and the method of wide-gap second derivative spectros-
copy. An optimal set of wavelengths is defined so that the SDR
value is monotonically determined by skin tissue StO2 regard-
less of the tissue condition variations. In Sec. 2.2, the proposed
multispectral imaging method is verified in tissue-simulating
phantoms, where bovine blood, intralipid, and ink are mixed

at different concentrations. Clinical feasibility of imaging
skin tissue StO2 is demonstrated on a healthy human subject
following a postocclusive reactive hyperemia (PORH) protocol.
During the PORH procedure, multispectral images are acquired
at the specific set of wavelengths and the tissue SDRs are
derived at each pixel for continuous mapping of tissue StO2.
To demonstrate that our StO2 algorithm is less vulnerable to
skin condition variations, 10 human subjects with different
skin types were recruited and their skin StO2 was measured
by our multispectral imaging system. Statistical analysis shows
that skin type does not significantly affect the StO2 measure-
ment by our system. To test the effect of additional background
absorption on cutaneous StO2 measurement, a portion of a
human subject’s forearm is painted with India ink and multi-
spectral images are acquired within and outside the painted
skin area at six designated wavelengths. The reconstructed StO2

map is compared with that of a commercial OxyVu hyperspec-
tral imaging system (HyperMed Imaging, Inc.).30 Reconstructed
StO2 values within and outside the painted area are compared
with those by the OxyVu system. The experimental results are
discussed in Sec. 3, followed by conclusions drawn from these
results.

2 Materials and Methods

2.1 Imaging Algorithms

Multispectral imaging of skin tissue StO2 is achieved by
successive algorithms of forward simulation and inverse
reconstruction. The forward model simulates light transport in
semi-infinite biologic tissue at different blood, scattering, mela-
nin, and StO2 conditions, with tissue parameters calibrated by
Monte Carlo simulation. The inverse model reconstructs tissue
parameters based on the analytical expression of SDRs at the
designated wavelengths.

2.1.1 Forward simulation

Skin has a physiologic structure that can be divided into seven
layers. Table 1 lists major tissue parameters of each skin layer,
including thickness (d), volume fraction of hemoglobin in blood
(r), and concentrations of blood (Cblood), water (Cwater), fat
(Cfat), and melanin (Cmelanin).

36–38 Traditionally, Monte Carlo
modeling is used to simulate light transport in multilayered bio-
logic tissue.39 However, this method is time-consuming and is
not appropriate for inverse reconstruction. Therefore, a simpli-
fied diffuse reflectance model with a semi-infinite boundary
condition is introduced.40 The absorption and scattering proper-
ties in this simplified model are averaged across different skin
layers in order to fit in the semi-infinite boundary condition,
while the multilayer tissue condition was used in Monte Carlo
modeling. First of all, the absorption of any skin layer, μai (i ¼ 1
to 7), is denoted as the sum of absorptions from different absorb-
ers, including oxygenated-hemoglobin (μHbOa ), deoxygenated-
hemoglobin (μHba ), melanin (μmel

a ), water (μwatera ), fat (μfata ),
and a baseline without any absorbers (μbasea ):

μai ¼ μHbOai þ μHbai þ μmel
ai þ μwaterai þ μfatai þ μbaseai ; (1)

where

μHbOai ¼ 2.303εHbO · StO2

�
CHb

M:W:Hb
Cblood
i

�
; (2)
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μHbai ¼ 2.303εHb · ð1 − StO2Þ
�

CHb

M:W:Hb
Cblood
i

�
; (3)

μmel
ai ¼ εmel · Cmel

i ; (4)

μwaterai ¼ εwater · Cwater
i · ð1 − riCblood

i Þ; (5)

μfatai ¼ εfat · Cfat
i · ð1 − riCblood

i Þ; (6)

μbaseai ¼ εbaseð1 − Cblood
i − Cmel

i − Cfat
i Þð1 − riCblood

i Þ. (7)

In the above equations, M:W:Hb and CHb are the molecular
weight and total concentration of hemoglobin, respectively.
εHbO, εHb, εwater, and εfat are the extinction coefficients of the
corresponding absorbers obtained from previous studies.41,42

εmel is the absorption coefficient of melanin:38 εmel ¼
1.7 × 1012λ−3.48 ðcm−1Þ. εbase is the absorption coefficient of
skin free of any absorbers:43 εbase ¼ 7.84 × 108λ−3.255 ðcm−1Þ.

The absorption of the first layer stratum corneum is different
from the other layers:36,37

μstratuma ¼ ð1-3 × 10−4λþ 0.125εbaseÞ × 0.95þ εwater

× 0.05 ðcm−1Þ: (8)

The overall absorption of the whole skin is calculated by
taking the weighted average of the absorption of all layers.

μa ¼
X7
i¼1

μai · fi; (9)

where fi is defined as the weight factor for the absorption of
a specific layer contributing to the overall absorption
ðP7

i¼1 fi ¼ 1Þ. In general, the weight factor of the top layer
is greater than that of the bottom layer because light attenuates
exponentially with the tissue depth. These weight factors are
determined by matching the simulated skin reflectance by the
diffuse transport model with that by Monte Carlo modeling,
as described in Appendix A. Different weight factors are derived
for different skin conditions.

The reduced scattering coefficient of the whole skin μ 0
s is

approximated by the following equation based on in vivo mea-
surements:23,44

μ 0
s ¼ 1.1 × 1012λ−4 þ 73.7λ−0.22 ðcm−1Þ: (10)

The diffuse reflectance R is calculated by the following
approximation algorithm:40

R ¼ Rs þ
ð1 − RsÞð1-sÞð1 − b1sÞ

1þ b2s
;

in which s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μa
μa þ μ 0

s

r
:

(11)

In the above equations, Rs ¼ ðn − 1Þ2∕ðnþ 1Þ2 is the specu-
lar reflectance; n is refractive index (n ¼ 1.4 for typical biologic
tissue); b1¼−0.34–1.1gþ0.68g2 and b2¼4.11–2.77gþ2.27g2

are two constants; g is an anisotropy factor.
Finally, since our experiment used an optical filter with a

bandwidth of 7 nm (Sec. 2.2.1), the resultant reflectance spec-
trum was corrected accordingly. The transmission of the filter
with a bandwidth FWHM is assumed to be a Gaussian shape:

Gðλ0 − λÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2∕π

p
FWHM

· e−4 ln 2·
�

λ−λ0
FWHM

�
2

: (12)

The reflectance spectrum Rðλ0Þ measured using this filter
was calculated as the convolution of Gðλ0 − λÞ and the original
reflectance spectrum RðλÞ.

Rðλ0Þ ¼ RðλÞ⊗ Gðλ0 − λÞ ¼
Zλ0þ3σ

λ0−3σ

RðλÞ · Gðλ0 − λÞdλ:

(13)

The above forward algorithm is used to simulate diffuse
reflectance measurements at 450 skin conditions, including
the combinations of five blood concentration levels (Cblood ¼
0.8, 0.9, 1, 1.1, 1.2 of normal Cblood), three melanin concentra-
tions (Cmelanin ¼ 0.02, 0.13, and 0.3 in living epidermis, corre-
sponding to Caucasians, Asians, and Africans), five scattering

Table 1 Properties of seven skin layers obtained and calculated from previous publications.36–38 d is the thickness of the layer; r is the volume
fraction of hemoglobin in blood; Cblood, Cwater, C fat, and Cmelanin are the volume fractions of blood, water, fat, and melanin in each layer; g, n, and μs
are anisotropy factor, refractive index, and scattering coefficient of each layer measured at 633 nm.

Skin layers dðμmÞ Cblood r Cwater C fat Cmelanin g n μs (mm−1)

Stratum corneum 20 0 0 0.05 0 0 0.86 1.5 100

Living epidermis 80 0 0 0.2 0 0.02 (Caucasians);
0.13 (Asians);
0.3 (Africans)

0.8 1.34 45

Papillary dermis 160 0.04 0.1114 0.5 0 0 0.9 1.4 30

Upper blood net dermis 100 0.3 0.1114 0.6 0 0 0.95 1.34 35

Reticular dermis 1400 0.04 0.1114 0.7 0 0 0.8 1.4 25

Deep blood net dermis 100 0.1 0.1114 0.7 0 0 0.95 1.38 30

Hypodermis 28,140 0.05 0.1114 0.7 0.6 0 0.75 1.44

Journal of Biomedical Optics 036001-3 March 2015 • Vol. 20(3)

Huang et al.: Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation



levels (μ 0
s ¼ 0.8, 0.9, 1, 1.1, 1.2 of typical μ 0

s), and six oxygen
saturation levels (StO2 ¼ 0, 20%, 40%, 60%, 80%, 100%). The
diffuse reflectance R as a function of λ, Cblood, Cmelanin, μ 0

s, and
StO2 is simulated in the wavelength range from 500 to 650 nm.
Figures 1(a), 1(b), and 1(c) show the skin reflectance spectra at
three melanin concentrations and different levels of StO2, scat-
tering, and blood concentration, respectively. According to
Fig. 1, the dc offset of the skin reflectance of all wavelengths
is affected by melanin concentration, scattering, and blood
concentration. Among these three factors, the effect of melanin
is over 10 times more significant than those of the other two
factors. On the other hand, the shape of the spectrum is mainly
determined by StO2, regardless of variations in scattering,
blood concentration, and melanin concentration. This observa-
tion indicates the possibility of using multispectral imaging
to analyze the shape of reflectance spectra and mapping
tissue StO2 with a minimal measurement bias from other tissue
components.

2.1.2 Reconstruction of tissue StO2

A multispectral second derivative algorithm is developed to
reconstruct skin tissue StO2 based on the reflectance measure-
ments at six designated wavelengths. The algorithm follows
consecutive steps of calculating the absorption-scattering ratio,
deriving wide-gap second derivative, obtaining an analytical
expression of SDR, and curve fitting for StO2 calculation. First,
the ratio between absorption and reduced scattering coefficients
(r ¼ μa∕μ 0

s) is calculated by transforming Eq. (11):

r ¼ μa
μ 0
s
¼ s2

1 − s2
; (14)

where b1 · s2 − ðb1 þR1 · b2 þ 1Þ · sþ ð1−R1Þ ¼ 0 and R1 ¼
ðR − RsÞ∕ð1 − RsÞ.

After that, a wide-gap second derivative spectroscopic
method is used to derive the second derivative of absorption-
scattering ratio rrðλÞ 0 0 as a function of the wavelength λ and
the wavelength gap δλ:45

rrðλÞ 0 0 ¼ ½rðλþ δλÞ þ rðλ − δλÞ − 2rðλÞ�∕ð2δλÞ: (15)

The SDR is then expressed as the ratio between rrðλ1Þ 0 0 and
rrðλ2Þ 0 0:

SDRðλ1; λ2Þ ¼
rrðλ1Þ 0 0
rrðλ2Þ 0 0

¼ rðλ1 þ δλÞ þ rðλ1 − δλÞ − 2rðλ1Þ
rðλ2 þ δλÞ þ rðλ2 − δλÞ − 2rðλ2Þ

: (16)

After substituting the absorption-scattering ratio rwith μa∕μ 0
s

and neglecting higher-order terms as described in Appendix B,
one can derive the approximated analytical expression of
SDRðλ1; λ2Þ:

SDRðλ1; λ2Þ ¼
μ 0
sðλ2Þ

μ 0
sðλ1Þ

·
½ðεHbOÞ 0 0λ1 − ðεHbÞ 0 0λ1 �StO2 þ ðεHbÞ 0 0λ1
½ðεHbOÞ 0 0λ2 − ðεHbÞ 0 0λ2 �StO2 þ ðεHbÞ 0 0λ2

:

(17)

According to Eq. (17), SDRðλ1; λ2Þ varies with skin tissue
StO2 and the scattering coefficients at wavelengths λ1 and λ2.
In the case when these two wavelengths differ from each
other by <10 nm, μ 0

sðλ1Þ ≈ μ 0
sðλ2Þ and SDRðλ1; λ2Þ is primarily

determined by tissue StO2. The wavelength pair of (λ1, λ2) can
be optimized for one-to-one mapping between SDR and StO2

with a minimal bias induced by different skin conditions. To
identify the optimal wavelength pair, all the possible SDRs
are calculated at different skin conditions for the wavelength
pairs ranging from 500 to 650 nm and with the wavelength dif-
ference of 8 and 10 nm, respectively. The calculated SDRs are
screened and the optimal wavelength set is found to be
λ1 ¼ 568 nm, λ2 ¼ 576 nm, and δλ ¼ 24 nm. According to
Eq. (16), in total, six wavelengths are involved in the calculation
of SDRð568;576Þðδλ¼24Þ: 544, 552, 568, 576, 592, and 600 nm.
Table 2 lists the SDR(568, 576) values at 12 representative
skin tissue conditions selected from all the 450 conditions as
described at the end of Sec. 2.1.1. The SDR level at 20%
StO2 is 0.872ð�0.004Þ averaged from 450 tissue conditions
of different levels of blood concentration, melanin concentra-
tion, and scattering. Similarly, the SDR level at 80% StO2 is
0.396ð�0.003Þ. The overall relationship between SDR and
StO2 can be approximated by the following monotonic function:

StO2 ¼ 100ð−1.4SDR3 þ 4.82SDR2 − 5.66SDRþ 2.38Þ:
(18)

Figure 2 plots the above monotonic function where skin tis-
sue StO2 can be derived by taking the reflectance measurements

Fig. 1 Spectral reflectance of skin tissue at different conditions simulated by a forward algorithm.
(a) Reflectance spectra at six StO2 levels, three melanin concentrations, and fixed blood and scattering
conditions. (b) Reflectance spectra at five scattering levels, three melanin concentrations, and fixed StO2
and blood concentration conditions. (c) Reflectance spectra at five blood concentration levels, three
melanin concentrations, and fixed StO2 and scattering conditions.
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at the designated wavelengths (i.e., 544, 552, 568, 576, 592, and
600 nm) and calculating the SDR (568, 576) using Eqs. (15)
and (16).

2.2 Experiments

2.2.1 Multispectral imaging system

A multispectral imaging system with a hyperspectral imaging
capability is constructed for quantitative imaging of skin tissue
StO2. A Hamamatsu ORCA ER deep cooling CCD camera
(Hamamatsu, Bridgewater, New Jersey) with a camera lens
(Edmund optics, Barrington, New Jersey) is used for image
acquisition. AVarispec liquid crystal tunable filter (Cambridge
Research Inc., Cambridge, Massachusetts) with a working
wavelength range of 400 to 720 nm and a bandwidth of 7 nm
is mounted in front of the camera for multispectral imaging. An
OSL1 fiber light source (Thorlabs, Newton, New Jersey) pro-
vides broadband optical illumination to the test object. A user
interface is programmed by Labview Professional Development
System (National Instruments, Austin, Texas) for equipment
control, synchronization, and image acquisition tasks.

For quantitative assessment of skin tissue StO2, multispectral
images are acquired at 544, 552, 568, 576, 592, and 600 nm
on skin tissue and on a National Institute of Standards and
Technology traceable white diffuser. The reflectance map at
each wavelength RðλÞ is calculated by taking the ratio of the
skin and the diffuser measurements pixel by pixel. After that,
the SDR value is calculated using Eqs. (15) and (16). Finally,
the StO2 map of skin tissue is obtained by Eq. (18).

Since the measurement of reflectance RðλÞ required multi-
spectral images of both skin and the white diffuser, the intensity

of the light source has to be stable during the acquisition of these
two groups of images. Thus, the light source was turned on for
10 min before any measurement was taken. An “auto exposure”
function was developed in the Labview user interface and the
camera exposure time was calibrated on the white diffuser to
ensure that the gray level of the 8-bit image was always 235
at each wavelength.

2.2.2 Algorithm verification on tissue-simulating phantoms

The StO2 algorithm is verified using a liquid blood phantom.
The phantom is prepared by mixing fresh bovine blood,
India ink (Sanford, Bellwood, Illinois), and 10% Intralipid
(Henry Schein Inc., Melville, New York) in phosphate buffered
saline (PBS, Fisher Scientific, Newton, New Jersey). First, a
base phantom is prepared by mixing 2.5 mL of blood, 4 mL
of Intralipid, and 30 μL of India ink in PBS solution to a
total volume of 200 mL. Different skin tissue conditions are
simulated by adding additional recipe components to the base
phantom. For example, different levels of blood concentration,
scattering, and skin darkness are simulated by adding 20% more
blood, 20% more Intralipid, and 100% more India ink to the
base phantom, respectively. The pH level of the phantom is
adjusted to 7.4 by adding NaOH and HCl. The oxygenation
level of the phantom is adjusted by the dropwise addition of
sodium hydrosulfite at a concentration of 0.1 g∕mL.

The phantom StO2 is measured by the multispectral imaging
method as described in the previous section and compared with
a hyperspectral imaging method as described in Ref. 25. To
eliminate the measurement artifact induced by ambient oxygen,
the blood phantom is placed in a cardboard container and
ventilated with argon gas. During the test, eight oxygenation
plateaus ranging from ∼100% to ∼0% are achieved by the
dropwise addition of sodium hydrosulfite. At each oxygenation
plateau, the blood phantom is mixed to homogeneity by a stir
bar. Hyperspectral images are acquired from 500 to 600 nm at
a spectral resolution of 2 nm. Among them, images at 544, 552,
568, 576, 592, and 600 nm are used to reconstruct the StO2 map
following our multispectral imaging algorithm. In comparison,

Table 2 Second derivative ratio [SDRð568;576Þðδλ¼24Þ] of 12 skin tis-
sue conditions. The definitions of skin conditions were described in
Sec. 2.1.1.

Different skin tissue conditions

SDRBlood level Melanin level Scattering level StO2 (%)

0.8 0.13 1 20 0.870

1.2 0.13 1 20 0.872

1 0.02 1 20 0.877

1 0.3 1 20 0.868

1 0.13 0.8 20 0.872

1 0.13 1.2 20 0.871

0.8 0.13 1 80 0.395

1.2 0.13 1 80 0.397

1 0.02 1 80 0.400

1 0.3 1 80 0.392

1 0.13 0.8 80 0.396

1 0.13 1.2 80 0.396

Fig. 2 Oxygen saturation of skin StO2 versus SDRð568;576Þðδλ¼24Þ.
The error bar in the plot indicates the variation due to different
blood concentration, melanin concentration, and scattering of skin.
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a hyperspectral imaging algorithm uses the whole reflectance
spectra to reconstruct tissue StO2.

2.2.3 Algorithm verification on a human subject

The multispectral imaging algorithm is verified by human
subject testing following a clinical protocol approved by the
Ohio State University IRB (Protocol No: 2010H0017). The
test measures the forearm tissue StO2 of a healthy male volun-
teer in response to a postocclusive reactive hyperemia (PORH)
procedure.46 The PORH protocol consists of a preocclusive
baseline period of 2 min without compression, a supersystolic
occlusion period of 2 min with a compression load of 50 mmHg
above the systolic pressure applied to the arm by a pressure
cuff, and a reactive hyperemia period of 2 min without compres-
sion. During the PORH test, multispectral images are acquired
continuously. In the meantime, deep tissue oxygen saturation
and skin oxygen tension on the same arm are measured
by an OxiplexTS tissue spectrophotometer (ISS Inc., Urbana
Champaign, Illinois) and a TCM transcutaneous oxygen mon-
itor (Radiometer, Denmark), respectively. The skin tissue StO2

levels obtained by multispectral imaging are compared with
the OxiplexTS and the TCM measurements.

2.2.4 Measuring StO2 of in vivo skin of different skin types

In order to evaluate the effect of skin type on oxygenation
measurement, a total of 10 subjects with different skin types
were recruited for continuous imaging of skin StO2 following
the PORH protocol. Among these 10 subjects, five are
Caucasians and light tanned Hispanos, who have the lowest
melanin levels; three are Asians with medium melanin levels;
and two are darkly pigmented Asians with the highest melanin
levels. The test procedure of each subject was the same as that
described in Sec. 2.2.3. The influence of skin types on multi-
spectral imaging of skin oxygenation was evaluated statistically
and compared with the OxiplexTS tissue spectrophotometer and
the TCM transcutaneous oxygen monitor measurements.

2.2.5 Measuring StO2 of in vivo skin with additional
background absorption

We have also tested in vivo whether the proposed multispectral
imaging algorithm is able to reduce the StO2 measurement bias
owing to background absorption variations. A portion of the
subject’s forearm within the field of view is painted with 1%
India ink dissolved in ethanol to simulate the darker skin
color. Multispectral images are acquired with the field of view
covering both the ink-painted area and the surrounding normal
tissue. In comparison, the same experiment is repeated at the
same skin location on the same subject using an OxyVu hyper-
spectral imaging system. The reconstructed StO2 maps by these
two imaging systems are compared side by side.

3 Results and Discussion
The multispectral imaging algorithm is verified by benchtop
testing on a tissue-simulating phantom with different oxygena-
tion levels. At each oxygenation level, multispectral images are
acquired at the wavelengths of 544, 552, 568, 576, 592, and
600 nm. The diffuse reflectance measurements are averaged
within three regions of interest (ROIs) for multispectral
reconstruction of StO2. Figure 3 plots the reconstructed StO2

values versus those derived from the previously reported

hyperspectral method.25 According to the figure, our multispec-
tral algorithm yields the StO2 values linearly correlated with the
hyperspectral algorithm. Moreover, StO2 measurements at four
simulated skin conditions (i.e., standard recipe, +20% lipid,
+20% blood, and +100% ink) fall into a diagonal line, indicating
that our StO2 reconstruction algorithm is not vulnerable to var-
iations in skin tissue parameters, such as blood concentration,
scattering, and background absorption.

The multispectral imaging algorithm is also verified by
human subject testing. Figure 4 shows the gray-scale image
of the tested arm and the reconstructed StO2 maps during the
PORH procedure. According to the figure, the skin StO2

level is in the range of 40 to 50% at the baseline condition before
vascular occlusion [Fig. 4(b)], which is coincident with the pre-
vious study.47 As the blood vessel is occluded, the skin StO2

level drops to <10% [Fig. 4(c)]. After the occlusion is released,
the skin StO2 level increases to >60% due to hyperemia
[Fig. 4(d)]. At the end of the test, the StO2 level resumes its
baseline value [Fig. 4(e)]. The StO2 dynamics detected during
a PORH procedure is consistent with the previous report.17

The StO2 dynamics of cutaneous tissue during a PORH pro-
cedure is compared with simultaneous measurements of deep
tissue oxygenation and transcutaneous tissue oxygen tension.
Figure 5(a) illustrates the test protocol where a baseline period
of 2 min is followed by a suprasystolic occlusion period of
2 min, and then a reactive hyperemia period of 2 min.
Figure 5(b) plots the corresponding dynamic changes of skin
tissue StO2 calculated by averaging 10 selected ROIs in the
StO2 oxygenation map as shown in Fig. 4. Figures 5(c) and
5(d) are simultaneous measurements of deep tissue oxygenation
and transcutaneous tissue oxygen tension. According to Fig. 5,
the dynamic changes of cutaneous tissue StO2 coincide well
with those of deep tissue oxygenation and transcutaneous
oxygen tension.

Skin tissue StO2 images were acquired on 10 human subjects
with different skin types to evaluate the robustness of our
multispectral imaging technique at different skin conditions.
The tests followed the same PORH protocol as described
before. Figure 6 shows the averaged skin StO2 levels for 10
subjects measured by our multispectral imaging system under
the normal condition without vascular occlusion pressure.
For each human subject, 10 measurements were carried out to

Fig. 3 Oxygen saturation of blood phantom measured by multi-
spectral algorithm proposed in this paper versus that measured by
hyperspectral imaging method of Ref. 25.
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generate 10 oxygen saturation maps. In each oxygen saturation
map (500 × 500 pixels), 10 ROIs of 25 × 25 pixels were ran-
domly drawn in the skin area without hair. In order to avoid
measurement artifacts due to arm curvature, these ROIs were
all selected away from the edge of the arm. Then the StO2

for a subject was calculated by averaging StO2 values from a
total of 10 × 10 ¼ 100 ROIs. In order to statistically evaluate
the influence of skin darkness on StO2 measurement, an analysis
of variance (ANOVA) test was performed. The resultant p value
is 0.29, indicating that skin type does not significantly affect
the StO2 measurement for our multispectral imaging system.

Figure 7 shows the averaged skin tissue StO2 (%) acquired
by our multispectral imaging system, the deep tissue StO2 (%)
acquired by the Oxiplex tissue oximeter, and the transcutaneous
oxygen tension pO2 (mmHg) acquired by the TCM device dur-
ing the PORH procedure on 10 subjects. The error bars indicate
the variations among different subjects. During the baseline
period (first 2 min), the skin StO2 (%) measured by multispectral
imaging system is 42.5ð�6.49%Þ; the deep tissue StO2 (%)
measured by the tissue oximeter is 55.0ð�13.6%Þ; and the trans-
cutaneous oxygen tension pO2 (mmHg) measured by the TCM
oxygen monitor is 62.0ð�19.7%Þ. These data show that the %
standard deviation of StO2 (%) measured by our system is much
less than that of the other two measurements. Furthermore, the
same ANOVA test was performed on the other two measure-
ments to statistically evaluate the influence of skin type. The
p values are both <0.01 for deep tissue StO2 (%) measured
by the tissue oximeter and transcutaneous oxygen tension
pO2 (mmHg) measured by the TCM oxygen monitor. The
above result shows that the measurement by our multispectral
imaging system is less biased by skin type than those of the
other two oximetry devices.

Fig. 4 Picture of the arm (a). Skin oxygenation map before (b), during (c), after vascular occlusion (d),
and at the end of the test (e).

Fig. 5 Postocclusive reactive hyperemia (PORH) test protocol (a),
and the history of cutaneous tissue oxygenation (b), deep tissue oxy-
genation (c), and transcutaneous tissue oxygen tension (d) mea-
sured by multispectral imaging, tissue oximeter, and TCM device,
respectively.

Fig. 6 Averaged skin StO2 of 10 subjects under normal conditions
measured by multispectral imaging with our algorithm. The subjects
were arranged in the order of skin melanin levels with 1 being the
lowest to 10 being the highest. Fitzpatrick scale of each subject is
also listed.
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The effect of additional background absorption on cutaneous
StO2 measurement is also tested on a human subject. A portion
of the subject’s forearm is painted with ink to simulate a darker
skin. Cutaneous StO2 maps are acquired by both our multispec-
tral imaging system and an OxyVu hyperspectal imaging sys-
tem. Figures 8(a) and 8(b) show the photographic image of
the forearm tissue with the central area painted with ink and
the corresponding StO2 map reconstructed by our multispectral
algorithm. Two square-shaped ROIs are selected within and
outside the ink-painted area, with the cutaneous StO2 levels
averaged as 41.6 and 38.1%, respectively, resulting in a meas-
urement difference of 3.5%. In comparison, the same test

performed by an OxyVu system on the same arm [Figs. 8(c)
and 8(d)] shows an averaged cutaneous StO2 level of 62.7%
within the ink-painted skin area and 43.0% outside the area,
resulting in a measurement difference of 19.7%. This result
presumably indicates that the proposed multispectral algorithm
effectively reduces the artifact of additional background absorp-
tion on cutaneous StO2 measurement.

The multispectral imaging technique reported in this paper
was developed primarily for the noncontact measurement of
cutaneous tissue StO2 since the proposed wide-gap second
derivative spectral imaging algorithm is sensitive to tissue
oxygenation changes. Considering that tissue oxygenation is

Fig. 7 Measurements of 10 subjects of different skin types during PORH: (a) average skin StO2 (%)
measured by our system, (b) deep tissue StO2 (%) measured by Oxiplex tissue oximeter, and (c) trans-
cutaneous oxygen tension pO2 (mmHg) measured by TCM oxygen monitor.

Fig. 8 Oxygenation of skin partially painted with ink. (a) and (c) Picture of the arm with a portion of skin
painted with ink. (b) Oxygenation map generated by our multispectral imaging system. (d) Oxygenation
map generated by a commercial hyperspectral imaging system.
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an important indicator of skin tissue viability, the proposed StO2

imaging technique may be used in many clinical applications,
such as plastic surgery, organ transplantation, and wound
healing. The limitation of this imaging technique is that it
may eliminate the lower-order heterogeneities of skin tissue,
leading to the diminished structural features. By projecting
different patterns of illumination, defining different imaging
algorithms, and choosing different wavelength sets, it is also
possible to use the multispectral imaging system for noncontact
imaging of skin tissue hemoglobin concentration, scattering,
and melanin concentration. Characterization of these additional
functional parameters may help to identify angiogenesis, bleed-
ing, size change of cell nucleus, and other tissue anomalies. A
Monte Carlo model was used to simulate light propagation in
skin tissue. Our Monte Carlo simulation result showed that
the averaged interrogation depth is 1 to 2 mm and is as deep
as reticular dermis, depending on the blood concentration, mela-
nin, and scattering level in the skin. The simulation results were
then fit into a semi-infinite diffusion model in order to derive an
analytical expression of SDR for effective reconstruction of tis-
sue StO2. The above approximations may introduce a systemic
error in StO2 reconstruction. First of all, the Monte Carlo model
assumed homogenous tissue properties in each layer while typ-
ical skin tissue has a lateral heterogeneity. Second, the diffusion
approximation assumes a turbid medium where the reduced
scattering coefficient is much greater than the absorption coef-
ficient. This is not always true in multilayer skin tissue. Finally,
both the epidermis and the dermis layers of skin are very thin,
leading to the breakup of diffuse approximation for light with a
short penetration depth. In order to minimize the effect of these
artifacts on the accuracy of StO2 measurement, our multispectral
oxygen imaging algorithm defined the correlation between the
Monte Carlo model and the analytical solutions in advance
based on the simulated data.

Two major measurement artifacts involved in our in vivo
experiments of skin tissue StO2 imaging are motion artifact
and the artifact caused by the arm curvature. In our study, the
motion artifact was minimized by keeping the subject’s arm
steady during the entire test period since a complete cycle of
multispectral imaging at six wavelengths took around 2 s. An
image processing algorithm was used to examine whether
the arm location was maintained stable among the acquired six
images. The measurement was considered invalid if there is
a shift of the arm location. In terms of the artifact caused by
the arm curvature, it mainly presents at the edge of the arm,
as shown in Fig. 4. Currently, we do not have an effective
calibration method to correct this artifact. To further reduce
this artifact, we may consider profilometry correction using
a tissue-simulating phantom48 or by wrapping a paper mask on
the curve arm for calibration.49

Although wide-gap second derivative spectroscopy has been
proposed for tissue oxygenation measurement for a while,45

we are the first to implement it for multispectral imaging of
cutaneous tissue StO2. Compared with probe technologies
that provide single-point measurements of oxygenation, our
multispectral imaging technique has the advantage of noncon-
tact measurement as well as less intrapatient variability since it
provides oxygenation mapping of an area of skin. Compared
with other hyperspectral imaging systems, our technique has
the advantage of higher temporal resolution since the StO2

reconstruction algorithm requires multispectral images at only
a small number of wavelengths. We have previously explored

the SDR algorithm based on four wavelengths.50 In comparison
with our previous work, six wavelengths are selected in our cur-
rent imaging algorithm so that more spectral characteristics of
oxy- and deoxy-hemoglobin can be captured in SDR calcula-
tion. These six wavelengths are optimized for not only improved
sensitivity to tissue oxygenation changes but also clinical utility
and engineering feasibility. Currently, our multispectral imaging
system is able to achieve an overall temporal resolution of 2 s
per measurement and a typical postprocessing speed of 30 s per
measurement, depending on the spatial resolution of the StO2

map. These figures can be significantly improved by optimizing
and customizing the engineering design of the imaging system.

In this study, skin StO2 of 10 subjects with different skin
types was measured to evaluate the effect of skin type on our
multispectral measurement of oxygenation. Since the reflec-
tance spectra of all StO2 levels are almost overlapped with
each other at the high melanin level, it is possible that the meas-
urement bias is hard to reduce for patients with very dark skin.
Extensive human tests with different skin colors are necessary in
order to evaluate the robustness and clinical utility of the pro-
posed imaging algorithm.

4 Conclusion
This paper reports a multispectral imaging algorithm for cuta-
neous tissue StO2 mapping with minimal bias induced by skin
conditions. A mathematical model is first established to simulate
skin tissue reflectance spectra at different conditions, including
skin oxygen saturation, blood concentration, tissue scattering,
and melanin concentration. Based on the simulation results,
the SDR parameter is derived and the optimal wavelength set
of 544, 552, 568, 576, 592, and 600 nm is obtained for multi-
spectral reconstruction of tissue StO2 regardless of tissue varia-
tions. The proposed multispectral imaging algorithm is verified
by benchtop and in vivo experiments. The benchtop experiment
shows that the reconstructed StO2 map is not vulnerable to var-
iations in blood concentration, scattering, and background
absorption levels. The in vivo experiment shows that the pro-
posed multispectral imaging algorithm is able to monitor cuta-
neous tissue StO2 at a sampling rate of 0.5 Hz. The test of 10
human subjects with different skin types shows that skin type
does not have significant effect on our StO2 measurement.
We also show that the reconstructed StO2 map by the multi-
spectral imaging algorithm is less affected by skin background
absorption compared with the OxyVu hyperspectral imaging
system. Our experimental results indicate that the proposed mul-
tispectral imaging technique has the potential for quantitative
imaging of skin tissue StO2 dynamics with minimal artifacts
at different skin conditions. Further in vivo validation tests
are necessary before implementation of the proposed multispec-
tral imaging algorithm in a clinical setting.

Appendix A: Absorption Weight Factors
Determination by Matching Diffuse Transport
Model and Monte Carlo Model
As described in Eq. (9) in Sec. 2.1.1, a weight factor f was used
to calculate the averaged overall absorption of the whole skin.
This weight factor indicates how the absorption of a specific
layer contributes to the overall absorption of skin. The weight
factor was found by matching the skin spectral reflectance simu-
lated by the diffuse transport model with the reflectance

Journal of Biomedical Optics 036001-9 March 2015 • Vol. 20(3)

Huang et al.: Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation



simulated by the Monte Carlo model. The diffuse transport
model has been described in Sec. 2.1.1, and the Monte Carlo
model is described here.

A Monte Carlo simulation of photon migration in a seven-
layer tissue model was used to simulate spectral reflectance of
skin of different conditions. AMonte Carlo Simulation Package,
developed in Ref. 39, was used with the following input param-
eters for each tissue layer: thickness d, refractive index n,
anisotropy factor g, absorption μaðλÞ, and scattering μsðλÞ. The
values of d, n, and g of each layer are listed in Table 1. The
values of n and g here are measured in 633 nm and they are
considered as constants for approximation in this simulation.
The absorption coefficient μaðλÞ of each layer was calculated
using the same algorithm as in the diffuse model [Eqs. (1) to
(8)]. The scattering μsðλÞ of each layer, which was calculated
differently compared to the diffuse model, is explicitly described
here.

The scattering coefficient μs of each layer measured at
633 nm is listed in Table 1. But there is no published data of
μs versus λ for each skin layer. Thus, the following method
was used to approximate the wavelength-dependent μs for each
skin layer. Tseng et al.23 reported that the reduced scattering
coefficient of in vivo skin can be expressed as

μ 0
Sðλ<600 nmÞ¼ a1λ−b1 ðcm−1Þ ðb1¼1.35 to 1.6Þ; (19)

μ 0
sðλ>600 nmÞ¼a2λ−b2 ðcm−1Þ ðb2¼1.00 to 1.15Þ.

(20)

These two equations were solved using the μs (633 nm) val-
ues listed in Table 1 to get parameters a1 and a2 (fixed b1 ¼ 1.5

and b2 ¼ 1.07) for each skin layer.
The scattering of the hypodermis, which is very different

from other layers, is given by44

μ 0
s ¼ 1050.6 · λ−0.68: (21)

Finally, the d, n, g, μaðλÞ, and μ 0
sðλÞ of each layer were fed

into the Monte Carlo simulation package. 200 K photons were
used for a single simulation. The skin spectral reflectance of
different skin conditions are simulated using the above Monte
Carlo method.

Then the weight factors for seven skin layers in the diffuse
transport model will be determined by matching the skin
reflectance simulated by the diffuse model with the reflectance
simulated by the Monte Carlo method. This problem can be
represented by the nonlinear least square optimization prob-
lem below. The optimal weight factors are found when the
square error between the reflectance of two models is
minimized.

Decision variable: weight factor fi (i ¼ 1 to 7)
Objective function: Minimize

P
λ fR½μaðfiÞ� − RMCg2

Constraints:
P

i fi ¼ 1 and 0 ≤ fi ≤ 1 (i ¼ 1 to 7)

R½μaðfiÞ� is the spectral reflectance calculated using the
diffuse model, and RMC is the spectral reflectance simulated
using the Monte Carlo method.

This optimization problem was solved by a trust-region-
reflective algorithm using MATLAB®. Different weight factors
are derived for different skin conditions.

Appendix B: Analytical Expression of
SDR ∼ StO2

Taking the second derivative of rð¼ μa∕μ 0
sÞ as a function of

wavelength λ, one will get

d2r
dλ2

¼ A ·
d2μa
dλ2

þ B ·
dμa
dλ

þ C · μa; (22)

where

A ¼ ð1∕μ 0
sÞ; B ¼ −ð2∕μ 02

s Þ
�
dμ 0

s

dλ

�
;

C ¼ 1

μ 02
s

�
2

μ 0
s

�
dμ 0

s

dλ

�
2

−
d2μ 0

s

dλ2

�
:

Since μ 0
s ¼ aλ−4 þ bλ−0.22 (a ¼ 1.1 × 1012; b ¼ 73.7) for

in vivo skin, one can find that the second and third terms in
Eq. (22) are much smaller than the first term. Thus,

d2r
dλ2

≈
1

μ 0
s
·
d2μa
dλ2

:

Since μa ¼ P
7
i¼1 μai · fi, where μai ¼ μHbOai þ μHbai þ

μmel
ai þ μwaterai þ μfatai þ μbaseai , substituting each absorption term

using Eqs. (2) to (7), one will get

μa ¼ FHbt · εHbO · StO2 þ FHbt · εHb · ð1 − StO2Þ
þ Fmel · εmel þ Fwater · εwater þ Ffat · εfat þ Fbase · εbase;

where

FHbt ¼
�
2.303

CHb

M:W:Hb

X7
i¼1

Cblood
i · fi

�
;

Fmel ¼
X7
i¼1

Cmel
i · fi

Fwater ¼
X7
i¼1

Cwater
i · ð1 − riCblood

i Þ · fi;

Ffat ¼
X7
i¼1

Cfat
i · ð1 − riCblood

i Þ · fi

Fbase ¼
X7
i¼1

ð1 − Cblood
i − Cmel

i − Cfat
i Þð1 − riCblood

i Þ · fi.

The absorption of fat and water are small terms. Thus,

μa ≈ FHbt · εHbO · StO2 þ FHbt · εHb · ð1 − StO2Þ
þ Fmel · εmel þ Fbase · εbase.

Thus,

d2r
dλ2

≈
1

μ 0
s

�
FHbt

d2εHbO

dλ2
· StO2 þ FHbt

d2εHb

dλ2
· ð1 − StO2Þ

þ Fmel
d2εmel

dλ2
þ Fbase

d2εbase

dλ2

�
.

It is found that ðd2εmelÞ∕ðdλ2Þ, ðd2εbaseÞ∕ðdλ2Þ ≪
ðd2εHbOÞ∕ðdλ2Þ, ðd2εHbÞ∕ðdλ2Þ [since εmelðλÞ and εbaseðλÞ
have an exponential decay shape]. Thus,
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d2r
dλ2

≈
FHbt

μ 0
s

�
d2εHbO

dλ2
· StO2 þ

d2εHb

dλ2
· ð1 − StO2Þ

�
: (23)

Thus, the second derivative ratio (SDR) is

SDR ¼ rrðλ1Þ 0 0
rrðλ2Þ 0 0

¼ μ 0
sðλ2Þ

μ 0
sðλ1Þ

·
½ðεHbOÞ 0 0λ1 − ðεHbÞ 0 0λ1 �StO2 þ ðεHbÞ 0 0λ1
½ðεHbOÞ 0 0λ2 − ðεHbÞ 0 0λ2 �StO2 þ ðεHbÞ 0 0λ2

: (24)

This is the approximated analytical expression of SDR for
any λ1 and λ2.
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