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Abstract. Photoacoustic imaging (PAI) with a linear-array-based probe can provide a convenient means of im-
aging the human microcirculation within its native structural context and adds functional information. PAI using a
multielement linear transducer array combined with multichannel collecting system was used for in vivo volu-
metric imaging of the blood microcirculation, the total concentration of hemoglobin (HbT), and the hemoglobin
oxygen saturation (sO2) within human tissue. Three-dimensional (3-D) PA and ultrasound (US) volumetric scans
were acquired from the forearm skin by linearly translating the transducer with a stepper motor over a region of
interest, while capturing two-dimensional images using 15, 21, and 40MHz frequency transducer probes. For the
microvasculature imaging, PA images were acquired at 800- and 1064-nm wavelengths. For the HbT and sO2
estimates, PA images were collected at 750- and 850-nm wavelengths. 3-D microcirculation, HbT, and sO2
maps of the forearm skin were obtained from normal subjects. The linear-array-based PAI has been found prom-
ising in terms of resolution, imaging depth, and imaging speed for in vivo microcirculation imaging within human
skin. We believe that a reflection type probe, similar to existing clinical US probes, is most likely to succeed in
real clinical applications. Its advantages include ease of use, speed, and familiarity for radiographers and cli-
nicians. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.051021]
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1 Introduction
The microcirculation serves key functions in the body, e.g., regu-
late blood pressure and body temperature, exchange nutrients and
metabolic waste to body, etc. Structural and functional changes
within the microcirculation have been associated with various dis-
eases including cancer, diabetes, psoriasis, capillary malforma-
tion, and Raynaud’s disease.1–4 Microcirculation imaging can
provide early indication of disease prior to clinical suspicion.5

The importance of noninvasive imaging techniques to get a better
understanding of the vascular involvement in such diseases is
critical. There are various techniques available for in vivo imaging
of blood vessels within human skin. Capillaroscopy, videocapil-
laroscopy, laser Doppler perfusion imaging, and dynamic laser
speckle imaging are commonly used, but all these techniques
are limited to imaging vessels close to the surface of the
skin.6–10 Optical coherence tomography11 can be combined with
novel flow contrast schemes12,13 to obtain high resolution micro-
vascular morphology but with a low imaging depth.

Photoacoustic imaging (PAI) breaks through the optical diffu-
sion limit and can provide microvasculature information at a high
penetration depth with resolution superior than pure optical tech-
niques by taking advantage of the low acoustic scattering in the
tissue. In PAI, image contrast is dominated by the strong optical
absorption of hemoglobin; therefore, vasculature can be imaged
effectively. In the last few years, there has been a huge interest in
the development of PAI techniques with the applications explored

in dermatology,14 oncology,15,16 vascular biology,17,18 cardiol-
ogy,19,20 ophthalmology,21,22 neurology,23 and gasteronology.24

The most commonly used PAI systems employ either a tomo-
graphic25,26 or planar geometry with a linear transducer array.27,28

In conventional photoacoustic tomography (PAT), an entire
region of interest is excited using full field illumination and
the photoacoustic (PA) waves are simultaneously detected either
using single ultrasound (US) detector or an array of detectors.
Then an acoustic back propagation algorithm is used to recon-
struct a three-dimensional (3-D) image. Linear-array-based PAI
systems detect PA waves from limited angles around the object
using an array of detectors. PAT systems suffer from low frame
rates due to the need for hundreds to thousands of laser pulses
per frame. Linear-array-based PAI systems allow images to be
acquired with just a few laser pulses and provide much higher
frame rates which make them more suitable for clinical imaging
applications. A variety of PAI systems have been developed
based on various scanning configurations and reconstruction
algorithms to get the optimal resolution, imaging depth, and con-
trast. Although PAT scanners based on spherical and cylindrical
detection geometries offer large angular aperture for data collec-
tion and an accurate image reconstruction, they are not well
suited for imaging highly superficial features such as the skin
microvasculature for clinical imaging applications.29 Moreover,
the commonly used single element PAI systems cannot satisfy
the requirement of real-time data acquisition and imaging,
which is a prerequisite in the clinical scenario. Linear-array-
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based PAI is an alternative option, particularly for clinical imag-
ing of skin and subcutaneous morphologies. In this study, PAI
based on a high-frequency multielement linear-array transducer
combined with a multichannel collecting system was used for
volumetric structural and functional imaging within human
skin. In vivo 3-D microcirculation, total concentration of hemo-
globin (HbT), and the hemoglobin oxygen saturation (sO2) maps
of the human forearm skin were obtained. The high-frequency
linear-array transducer probes used in this study are similar in
style, shape, and use to regular hand-held clinical US probes,
which can easily be acoustically coupled to the skin and
moved around while imaging in real time.

2 Materials and Methods
A schematic of the experimental setup used in this study is
shown in Fig. 1. A combined PA and US imaging system
were operated with a linear-array transducer probe. The key

Fig. 1 Schematic of the experimental setup used in this study.
Combined photoacoustic (PA) and high-frequency ultrasound (US)
imaging within human forearm skin using linear-array transducer
probe.

Fig. 2 The maximum intensity projection (MIP) images of the 1951 USAF target scanned by (a) 40 MHz,
(b) 21 MHz, and (c) 15 MHz frequency transducer probes along with the intensity profiles and the fitted
Gaussian functions.
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elements of the PAI system (Vevo LAZR, Fujifilm
VisualSonics) are: tunable PA excitation laser system (optical
parametric oscillator pumped by frequency-doubled Nd:YAG
laser with a repetition rate of 20 Hz, pulse duration of 4 to
6 ns, spot size of 24 mm2, and step size of 2 nm), multielement
linear-array transducer, amplifier, and a digitizer. Each linear-
array transducer probe used in this study consisted of 256 ele-
ments, which were divided into four quadrants, each with 64

elements. Pulsed laser light was focused into the tissue through
two fiber optic bundles (20 × 1.25 mm) mounted on each side of
the acoustic aperture of the transducer probe, emitting two laser
beams at an angle of 30 deg relative to the imaging plane. The
generated PA waves propagated back to the transducer probe
were coupled through US gel and acquired by the transducer
array. For each laser pulse, the PA signals were captured by
one quadrant of the transducer array. Since four pulses were

Fig. 3 In vivo PA/US images of the human forearm acquired using 40, 21, and 15 MHz frequency trans-
ducer probes at 800-nm wavelength: (a) photograph taken from the subject showing the forearm skin
examined by PA and high-frequency US imaging (b, d, and f) fused PA/US vertical (x–y) slices (B-scans)
of the forearm skin acquired using 40, 21, and 15 MHz frequency transducer probes, respectively (c, e,
and g) MIP images through the PA volumes of the human forearm acquired using 40, 21, and 15 MHz
frequency transducer probes, respectively.
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required for each full width image, the frame rate was one-fourth
of the laser repetition rate (i.e., 5 Hz). The PA information was
passed onto a computer through an amplifier and a digitizer
where it was processed into a 3-D image.

PAI in this work was performed using three transducer
probes of center frequencies: 15, 21, and 40 MHz. The

15 MHz probe (broadband frequency: 9 to 18 MHz) provides
an axial resolution of 100 μm, imaging depth up to 36 mm,
and imaging width up to 32 mm. The 21 MHz probe (broadband
frequency: 13 to 24MHz) provides an axial resolution of 75 μm,
imaging depth up to 20 mm, and imaging width up to 23 mm.
The 40 MHz probe (broadband frequency: 32 to 55 MHz)

Fig. 4 In vivo PA/US images of the human forearm acquired using 40, 21, and 15 MHz frequency trans-
ducer probes at 1064-nm wavelength: (a) photograph taken from the subject showing the forearm skin
examined by PA and high-frequency US imaging (b, d, and f) fused PA/US vertical (x–y) slices (B-scans)
of the forearm skin acquired using 40, 21, and 15 MHz frequency transducer probes, respectively (c, e,
and g) MIP images through the PA volumes of the human forearm acquired using 40, 21, and 15 MHz
frequency transducer probes, respectively.
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provides an axial resolution of 40 μm, imaging depth up to
15 mm, and imaging width up to 14.1 mm. The lateral resolution
of each transducer probe was measured by scanning a 1951
United States Air Force (USAF) resolution test standard and
determining the largest pattern that cannot be discerned.
Figures 2(a)–2(c) show the maximum intensity projection (MIP)
images of the 1951 USAF target scanned by 40, 21, and 15 MHz
frequency transducer probes, respectively, along with the inten-
sity profiles and the fitted Gaussian functions. The full width
at half maximum lateral resolutions for 15, 21, and 40 MHz
frequency transducer probes were found to be 314, 158, and
140 μm, respectively.

This study was approved by National University of Ireland,
Galway Research Ethics Committee and written informed con-
sent was obtained from the volunteers. All the experimental pro-
cedures were in accordance with the Helsinki declaration of
1975, as revised in 2008. In vivo images of the subcutaneous
vasculature in the human forearm were acquired using 15,
21, and 40 MHz frequency transducer probes. The forearm
skin was acoustically coupled to the transducer probe head

through US gel and successive PA and US scans were acquired.
3-D data sets were collected by linearly translating the trans-
ducer (with integrated optical fibers) with a stepper motor
over a region of interest, while capturing each two-dimensional
(2-D) image of the 3-D stack. For a single 3-D PA/US scan, 300
frames (B-scans) were acquired over a region of 30 mm with a
step size of 0.1 mm. The data acquisition time was 60 s.

3 Results and Discussion
Figure 3 shows in vivo images of the human forearm acquired
using 40, 21, and 15 MHz frequency transducer probes at 800-
nm wavelength. The fluence was below the safe maximum per-
missible exposure of 20 mJ∕cm2 for human skin.30 The 800-nm
wavelength was used to obtain sufficient tissue penetration
depth because of the lowest light absorbance in the tissue com-
ponents such as melanin, oxy- and deoxyhemoglobin, and lipid
and water in the near-infrared (NIR) wavelength range (600 to
1000 nm). The photograph taken from the subject showing the
forearm skin examined by PA/US is shown in Fig. 3(a).

Fig. 5 In vivo coregistered PA and ultrasound (HFUS) images of the human forearm acquired using
21 MHz frequency transducer probe: (a) fused PA and US vertical (x–y) slice (B-scan) of the forearm
skin for a 22 × 20 mm2 region acquired at 800-nm wavelength. (B) Volume rendered representation of
the coregistered PA and US data of the forearm skin for a 40 × 22 × 20 mm3 region acquired at 800-nm
wavelength. (c) Fused PA (HbT) and US B-scan of the forearm skin for a 23 × 20 mm2 region acquired at
750- and 850-nmwavelengths. (d) Volume rendered representation of the coregistered PA (HbT) and US
data of the forearm skin for a 40 × 23 × 20 mm3 region acquired at 750- and 850-nm wavelengths.
(e) Fused PA (sO2) and US B-scan of the forearm skin for a 23 × 20 mm2 region acquired at 750-
and 850-nm wavelengths. (d) Volume rendered representation of the coregistered PA (sO2) and US
data of the forearm skin for a 40 × 23 × 20 mm3 region acquired at 750- and 850-nm wavelengths.
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Figures 3(b), 3(d), and 3(f) show fused PA/US single vertical
(x–y) slices (B-scans) of the forearm skin acquired using 40,
21, and 15 MHz frequency transducer probes, respectively.
The US image (gray scale) shows the layered skin morphology.
The PA data (red) shows several blood vessels distributed
throughout the dermis and the underlying subcutaneous tissue.
Figures 3(c), 3(e), and 3(g) show MIP images through the PA
volumes obtained using 40, 21, and 15 MHz frequency trans-
ducer probes, respectively. These figures demonstrate the ability
of the system to detect the PA signal from the microvasculature
as a series of 2-D images rendered in 3-D. High imaging depths
can be achieved using low frequency transducer probes but with
a lower resolution, as a tradeoff, due to the decreasing attenu-
ation of US with frequency. Although the ultimate resolution
limit is defined by acoustic attenuation, other factors such as
element size, detector bandwidth, and aperture can be limiting
factors in practice.

Figure 4 shows in vivo images of the human forearm
acquired using 40, 21, and 15 MHz frequency transducer probes
at a 1064-nm wavelength. The fluence was once again below the
safe maximum permissible exposure of 20 mJ∕cm2 for human
skin. The photograph taken from the subject showing the
forearm skin examined by PA/US is shown in Figure 4(a).
Figures 4(b), 4(d), and 4(f) show fused PA/US single vertical
(x–y) slices (B-scans) of the forearm skin acquired using 40,
21, and 15 MHz frequency transducer probes, respectively.
Figures 4(c), 4(e), and 4(g) show MIP images through the
PAvolumes obtained using 40, 21, and 15 MHz frequency trans-
ducer probes, respectively. The lower optical attenuation by
blood at 1064 nm compared to 800 nm resulted in a higher pen-
etration depth than was obtained in Fig. 3.

PAI provides an integrated platform for structural and
functional imaging by combining high contrast and spectro-
scopic-based specificity of optical imaging with high spatial
resolution of US imaging. Figure 5 shows coregistered PA and
US images of the human forearm acquired using 21 MHz
frequency transducer probe. The acquired scans measured
40ðlengthÞ×22ðwidthÞ×20ðdepthÞmm2. Figure 5(a) shows
a B-scan of the fused PA and US image of the forearm skin
for a 22 × 20 mm2 region acquired at 800-nm wavelength.
Figure 5(b) shows the volume rendered representation of
the coregistered PA and US data of the forearm skin for a 40 ×
22 × 20 mm3 region. The high optical contrast coregistered
with high resolution US imaging allows real-time in vivo
imaging of deep tissues with detailed anatomical analysis. A
supporting movie (Fig. 6) is provided to present the rotating
structure of the PA volume which illustrates the network of
blood vessels that has been detected. Oxygenated hemoglobin
(HbO2) has different absorption characteristics than deoxygen-
ated hemoglobin (Hb) so an estimate of HbT and sO2 can be
derived and displayed as a parametric map by imaging with
different wavelengths of light. For the HbT and sO2 estimates,
PA images were collected at 750- and 850-nm wavelengths.
Figure 5(c) shows a B-scan of the fused PA (HbT) and
US image of the forearm skin for a 22 × 20 mm2 region.
Figure 5(d) shows the volume rendered representation of the
coregistered PA (HbT) and US data of the forearm skin for
a 40 × 23 × 20 mm3 region. Figure 5(e) shows a B-scan of
the fused PA (sO2) and US image of the forearm skin for a 22 ×
20 mm2 region. Figure 5(f) shows the volume rendered repre-
sentation of the coregistered PA (sO2) and US data of the fore-
arm skin for a 40 × 23 × 20 mm3 region.

The linear-array-based PAI has been found promising in
terms of resolution, imaging depth, and imaging speed for
in vivo microcirculation imaging within human skin. However,
significant challenges remain, particularly with the imaging
depth. The presented results clearly show the feasibility of
linear-array-based PAI as a clinical tool for in vivo volumetric
imaging of the blood microcirculation, HbT, and sO2 within
human tissue. The 3-D microcirculation, HbT, and sO2 maps
obtained will be useful for clinical imaging applications such
as management of cancer including screening, diagnosis, treat-
ment planning, therapy monitoring, and accurate measurement
of metabolic rate during early diagnosis and treatment of various
skin and subcutaneous tissue disorders. We believe that the
reflection type probe used in this study is most likely to succeed
in real clinical applications. Its advantages include ease of use,
speed, and familiarity for radiographers and clinicians.
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