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Abstract. We apply three optical coherence tomography (OCT) image analysis techniques to extract morpho-
metric information from OCT images obtained on peripheral nerves of rat. The accuracy of each technique is
evaluated against histological measurements accurate toþ∕ − 1 μm. The threeOCT techniques are: (1) average
depth-resolved profile (ADRP), (2) autoregressive spectral estimation (AR-SE), and (3) correlation of the deriva-
tive spectral estimation (CoD-SE). We introduce a scanning window to the ADRP technique, which provides
transverse resolution and improves epineurium thickness estimates—with the number of analyzed images
showing agreement with histology increasing from 2∕10 to 5∕10 (Kruskal–Wallis test, α ¼ 0.05). A method of
estimating epineurium thickness, using the AR-SE technique, showed agreement with histology in 6∕10 ana-
lyzed images (Kruskal–Wallis test, α ¼ 0.05). Using a tissue sample in which histology identified two fascicles
with an estimated difference in mean fiber diameter of 4 μm, the AR-SE and CoD-SE techniques both correctly
identified the fascicle with larger fiber diameter distribution but incorrectly estimated the magnitude of this differ-
ence as 0.5 μm. The ability of the OCT signal analysis techniques to extract accurate morphometric details from
peripheral nerves is promising but restricted in depth by scattering in adipose and neural tissues. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.23.11.116001]
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1 Introduction
In the field of neural prosthetics, the performance of nerve
cuffs for recording and stimulating bioelectric signals can be
improved using physiologically accurate volume conductor
models of nerves.1,2 The morphometric details required for
such models are the size, number, and location of fascicles,
the thickness of the epineurium and perineurium ultrastructural
tissue layers, and the spatial variations in fiber diameter distri-
bution. It is common to use simplified morphometric details,
such as in Refs. 2–4; however, the results are not transferrable
to patients due to patient-specific tissue morphology. Another
approach is to use destructive imaging methods, such as light
microscopy, to acquire micrometer resolution histological images
of the nerve cross section at one location and then extrude this
along the length dimension, such as in Refs. 5 and 6; however,
this does not account for the length variation in tissue morphology
caused by fascicle bifurcation.7 Magnetic resonance imaging
(MRI) enhanced with gadolinium-DTPA (diethylenetriamine
penta-acetic acid) contrast agent, a nondestructive imaging
method, has been used to image the size, number, and location
of fascicles in an extracted nerve tissue with a voxel size
of 30 × 30 × 250 μm3,1 which is promising, particularly if
replicated with in vivo measurements. For a patient-specific and
physiologically accurate model, a nondestructive volumetric
imaging method is required with a resolution of several μm.

The structure of peripheral nerves comprises one or more fas-
cicles bound together by epineurium tissue, 10’s of μm thick.8

In humans, the median nerve is several mm across and can con-
tain 10 or more fascicles at the elbow, with each fascicle ranging
in size from 0.12 to 2 mm2,9 whereas, in comparison, the rat
sciatic nerve is approximately 1 mm across and can contain
3 to 4 fascicles ranging in size from 0.05 to 1 mm2. Each fas-
cicle contains several thousand nerve fibers bound together by
endoneurium tissue, and encompassed by a layer of perineurium
tissue several μm thick.10 Nerve fibers are long cylinders ranging
in size from 1- to 22-μm diameter and are heterogeneously dis-
tributed within fascicles;9 they are also highly aligned, densely
packed, and usually sheathed in a lipid-rich myelin from encasing
Schwann cells. The orders of magnitude of the dimensions of the
nerves under study place optical coherence tomography (OCT),
a nondestructive imaging method, well as a potential means to
acquire morphometric details without damaging the nerve.

Qualitative OCT techniques of distinguishing neural tissue
from surrounding tissue,11–14 identifying different neural tissue
layers,11–13,15,16 and analyzing levels of myelination17 do not
provide quantified values nor confidence levels. On the other
hand, quantitative OCT techniques, such as the depth-resolved
analysis of optical properties18 and statistical analysis of spec-
tra,19,20 provide quantified values for nerve tissue morphometry
but have not been validated. Other quantitative OCT techniques,
such as the analysis of Mie scatter spectra21 and optical scatter-
ing properties,22 have been used to classify tissue, but have not
yet been applied to peripheral nerves. There is, therefore, a need
to evaluate and validate the performance of OCT techniques in
imaging peripheral nerves, which builds on preliminary work in
Ref. 23.

In this paper, we present results from three quantitative OCT
signal analysis techniques that we identified in the literature and
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replicated with some improvements on images of rat sciatic
nerve acquired with a swept source OCT (SS-OCT) system.
Of the three OCT techniques—average depth-resolved profile
(ADRP), autoregressive spectral estimation (AR-SE), and cor-
relation of the derivative spectral estimation (CoD-SE)—one,
the former, was selected for the current study as it was devel-
oped specifically for the estimation of the thickness of the exter-
nal layer of epineurium. The identification and quantification of
internal epineurium tissue layers would allow determination of
the size, number, and location of fascicles. The latter two tech-
niques, AR-SE and CoD-SE, were developed for scatter size
estimation applications, and selected for the current study
due to their potential to evaluate the spatial variations in fiber
diameter distribution. With each technique, we attempt two
tasks: (1) extract the epineurium layer thickness and (2) distin-
guish adipose tissue. In addition to this, for the two techniques
based on scatter size estimation we attempt a third task.
(3) Estimation of fiber diameter distribution of nerve fibers
within fascicles. We compare our results with the histological
analysis performed on light-microscopy images, a step that is
absent in the original reporting of the OCT techniques.18–21,24

When replicating each technique, parameters were selected
using unbiased methods, or otherwise noted as biased, to ensure
fair comparison and practical application. We demonstrate
applications of the two scatterer size estimation techniques
using them to evaluate the combined thickness of epineurium
and perineurium tissue, and to differentiate adipose tissue from
neural tissues. The results help to establish the abilities and
limitation of current OCT techniques, and potential for OCT-
based scatterer diameter estimation techniques, in extracting
morphometric details from peripheral nerves, and demonstrates
OCT as a complimentary tool for developing patient-specific
nerve models to improve performance of neural prosthetics.

2 Materials and Methods

2.1 Tissue Preparation and Handling

The animal procedures were approved by the University of
Auckland Animal Ethics Advisory Committee. All animal
specimens were rats of Wistar breed and male. Euthanasia
was performed by first anaesthetising with isoflurane and then
performing cervical dislocation. A total of three nerve tissue
samples were explanted, each extending the entire length of
the sciatic nerve and, distal to bifurcation, as much of the tibial
and peroneal branches as practicable. Samples were then stored
in 0.01 M phosphate buffered solution (PBS) at 4°C for up to
three days before being transported and imaged using OCT.
The physiological pH and osmolarity of PBS ensured that
the cellular and ultrastructural features of the sample were pre-
served. Several points along each tissue sample were randomly
selected and marked with Davidson’s marking dye and 1%
picric acid, and these points imaged with OCT. Ex vivo imaging
allowed any location of the nerve to be imaged by manipulating
the nerve instead of the incident light beam, which would have
required significant modifications to the OCT system. In this
study, we present results and images from one point each from
the sciatic section of two nerves, and one point from the tibial
section of one nerve.

During OCT imaging, tissue samples were suspended at two
points 20 mm apart along the length. Sagging of the tissue sam-
ple was used as a visual indication that the tissue sample was not
mechanically stretched. Four OCT images, at 90-deg offsets,

were acquired of the dyed points within the suspended section.
Between image acquisitions, 0.01 M phosphate buffered solution
was applied to the outside of the nerve, using a syringe to avoid
tissue drying. Postimaging, the tissue samples were returned to
the phosphate buffered solution and transported to the Anatomy
and Medical Imaging department at the University of Auckland
for histological analysis using light microscopy.

Error introduced by thermal expansion, caused by variation
in the sample temperature during imaging between 4°C and
20°C, is expected to be <0.5% using the thermal expansion
coefficient of water. Error introduced from stretching, due to
suspension of the tissue samples during OCT imaging, is
<0.05% using a Poisson’s ratio and Young’s modulus of 0.37
and 41 MPa, respectively.25

2.2 Microsphere Samples

Three microsphere samples (Spherotech Inc.) were used in
this study with concentration, and mean diameter þ ∕ − 1
standard deviation of: (1) 5% w/v, 3.8þ ∕ − 0.25 μm;
(2) 5% w/v, 5.33þ ∕ − 0.25 μm; and (3) 2.5% w/v
8.49þ ∕ − 0.25 μm. Standard deviations of their respective
size distributions were calculated using measured data provided
by the supplier with the samples. For each sample, the vial con-
taining the microspheres in the solution was shaken vigorously
to ensure homogeneity of the solution before a 1-mL sample was
extracted and transported, using a pipette, to a separate container
under the OCT system and immediately imaged.

2.3 Optical Coherence Tomography Image
Acquisition and Processing

The OCT system has a swept source centered at 1310 nm with
an 80-nm bandwidth (3 dB). The system has 12.5-μm axial
resolution, 20-μm lateral resolution, and the 6-dB drop off in
air is over 12 mm. More details of the OCT system can be
found in Refs. 26 and 27.

The B-scan direction was perpendicular to the length of
the nerve tissue samples, spanned a physical distance of
5 mm, and contained 714 A-scans. B-scans were saved from
the LABVIEW® user interface to text files and then processed
individually with MATLAB® 2015b using the signal analysis
techniques described below.

To determine the distance when calculating epineurium
thickness, an average refractive index had to be used for the
entire OCT image; here, we have used the refractive index of
n ¼ 1.40, which is the average of values reported for myelin
(1.455)28 and bovine tendon, a collagenous connective tissue,
(1.353).29 The axial distance per pixel, of 10 μm in air, was,
therefore, 7.1 μm in neural tissues in all subsequent calculations
of epineurium thickness.

2.4 Histological Analysis by Light Microscopy

Histology by light microscopy was performed at one location on
each of the tissue samples, see Fig. 1. Tissue samples were pre-
served in 10% neutral buffered formalin for 24 hours, followed
by 70% ethanol prior to paraffin embedding. Tissue slices of
10-μm thick were obtained using a microtome then hemotoxylin
and eosin were used to stain the collagen-rich epineurium,
perineurium, and endoneurium tissues pink. The lipid-rich
myelin was stained with Luxol Fast Blue. Images were obtained
on a Leica DM500 light microscope at 4×, 10×, and 40×
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magnifications. A uniform shrinkage of 10%, produced during
the preparation process, was taken into account by multiplying
all values extracted from histology by a factor of 1.1.

The thickness of epineurium tissues was determined using
images obtained at 4× magnification. In each image, a line
was drawn through the tissue layers, perpendicular to the tissue
outer surface, at 20 locations approximately equidistant around
the fascicle boundaries. Then, the thickness of tissue along these
lines was measured manually. Error introduced by the measure-
ment procedure was estimated to be þ∕ − 1 μm.

Fiber diameter distribution was calculated in areas of the tis-
sue sample images that were visually identified as containing a
few artifacts from sample preparation. A grid of 100-μm squares
was laid over the area of interest in the 40× magnification
images and the fiber diameter distribution was calculated for
each grid square. Fibers were typically ellipsoid shaped; there-
fore, the major and minor axes were used to calculate the
diameter of a circle with an equivalent area. The diameter
estimates contained ∼þ ∕ − 1 μm uncertainty. Furthermore,
the method employed could not identify fiber diameters <3 μm
due to the very thin, or absent in the case of unmyelinated fibers,
myelin sheath.

2.5 Average Depth-Resolved Profile Technique

Two techniques to identify the fascicle boundary, one using struc-
tural data and the other phase retardation data, are presented in
Ref. 18. Both techniques are applied to the ADRP of the middle
50% of A-scans of the tissue sample. The ADRP is generated by
first cropping pixels outside the tissue sample, then flattening the
remaining pixels so that each row in the columns of data (A-scan)
correlates to the same axial depth in the tissue sample, and,
finally, averaging values across each row. To estimate the fas-
cicle boundary with higher lateral resolution, we implemented
the ADRP across windows containing five A-scans, which were
scanned laterally across the sample in one-pixel steps.

The ADRP-structural-data technique operates on the expect-
ation that the anatomy of the intrafascicle volume will produce
a uniform decay rate of the OCT signal.18 To identify the fascicle
boundary, the ADRP-structural-data technique plots the signal-
to-noise ratio (SNR) of the ADRP on a logarithmic scale against

depth, then fits a linear slope to the uniformly decaying region of
the curve, Fig. 1. The absolute difference between the linear fit
and the ADRP curve forms the residual SNR curve. A threshold
value is then calculated as the mean plus 2 standard deviations
from the linear portion of the residual SNR curve. The fascicle
boundary is identified by the intersection of the threshold value
and the curve neighboring the uniformly decaying region. In our
implementation of the five A-scans sliding window method, we
fit the linear slope to data from a depth range of 15 to 50 pixels
in all window ADRPs, Fig. 1. The start value of 15 pixels
correlates to a depth of 113 μm, which is outside the typical
epineurium thickness values provided by histological analysis
and, therefore, is highly unlikely to include epineurium tissue.

We calculated the SNR at each depth using SNR ¼
20 logðI∕σÞ, where I is the signal intensity at that depth, and
σ is the standard deviation of the noise. To find σ, we determined
the standard deviations of the five A-scans nearest to one end of
the B-scan, and so known not to contain any reflectors across
the depth range of interest, and then calculated the average of
these standard deviations.

To identify adipose tissue, we calculated the threshold from
the entire portion of the residual SNR curve, instead of just the
linear portion, which increases the threshold value. In areas with
epineurium, the residual-SNR curve in the uniformly decaying
region was below the threshold and the initial peaks of the
residual-SNR curve, associated with epineurium, were above
the threshold. Conversely, in areas with adipose tissue, which
contained multiple peaks and no uniformly decaying region,
the residual SNR curve oscillated around the threshold.

In the ADRP-phase-retardation technique, a linear slope is
fitted to the rising portion in a plot of phase retardation against
depth, which occurs due to the birefringence of myelin. The
residuals, threshold, and fascicle boundary are then calculated
in the same way as the ADRP-structural-data technique.
We did not employ the ADRP phase-retardation technique on
any tissue samples as our system was not polarization sensitive.

2.6 Autoregressive Spectral Estimation Technique

The diameter range of nerve fibers places them in the Mie
scattering regime, which generates diameter-dependent spectral

Fig. 1 An ADRP curve generated by averaging five adjacent A-scans from a flattened OCT image and
the linear fit calculated from pixel depth range of 15 to 50 pixels (a), where a pixel depth of 0 is the surface.
The residuals, calculated from Fig. 1(a), and the threshold line used to determine the epineurium inner
boundary (b).
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modifications. The AR-SE technique for estimating scatterer
diameter, which statistically analyses the spectral content of
backscattered light, was originally presented in Ref. 30 and
then applied to biological samples, including the sciatic nerve
of rabbit, in Refs. 19 and 20. The technique assumes a linear rela-
tionship between the scatterer diameter d̃ and the eigenvectors
produced by principal component analysis (PCA) of the power
spectral density fPxx produced using the Burg’s method, such
that fPxx Ã ¼ d̃ where Ã is a coefficient matrix that is populated
using samples of known diameter, also called “training data.”

To obtain the training data, we used the three microsphere
samples described above (Sec. 2.2). Awindow of 50 × 10 pixels
(axial × transverse) in size was raster scanned across half of
the OCT image at 25 and 1 pixel steps, respectively. Data were
row-averaged to suppress noise and normalized to reduce
variations from depth attenuation. The decay of autoregressive
reflection coefficients toward zero determined the autoregres-
sive order to use in calculating the power spectral density.
A target variance of 99.99% determined the number of
components to extract from weighted PCA of the power spectral
density data. The remaining half of each OCT image of micro-
spheres was used to obtain diameter estimates.

In applying the AR-SE technique to OCT data from tissue
samples, larger window sizes reduce noise, but potentially
remove more of the targeted detail such as the intrafascicle
boundary and localized variation in fiber diameter distribution.
Furthermore, the maximum autoregressive order that can be
applied is one less than the number of data points, i.e., the
axial window size. A window size of 10 × 10 pixels, scanned
at 1 pixel steps, was selected as it produced a good balance
between noise reduction and sufficient resolution. At each
step, the autoregressive order to use was determined by analyz-
ing the autoregressive reflection coefficients, with a drop
below þ∕ − 0.2 in magnitude used as the threshold criterion.
Alternatively, when the decay of autoregressive reflection
coefficients toward zero was not clearly identifiable, an auto-
regressive order of 3 was selected as this value was common
in the tissue samples and was found to minimize noise in the
solution.

In the processed OCT images, each lateral and depth pixel
contained a fiber diameter estimate. An area of interest was
selected from the processed OCT images, which began suffi-
ciently below the surface to pertain to the intrafascicle volume,
and the diameter estimates at all pixels within the area formed
the sample for the analysis of fiber diameter distribution.

2.7 Correlation of the Derivative Spectral Estimation
Technique

The CoD-SE technique was originally presented in Ref. 24, and
then again with additional signal processing steps in Ref. 21.
This technique uses Mie theory to generate spectra for spherical
scatterers before taking the derivative and then the autocorrela-
tion to produce the CoD. The CoD bandwidth is calculated as
the first minimum, i.e., the minimum with the lowest lag value,
in the CoD of the spectra. A curve is fitted to a plot of the
theoretical relationship between the scatterer diameter and
CoD bandwidth. In OCT data, the spectra are obtained using
the Fourier transform with a Gaussian window. To lower the
noise, spectra are low-pass filtered and the edges are removed.
Differentiating with respect to the neighboring value followed
by autocorrelation produces the CoD. CoD-SE is highly

sensitive to the lateral position of the window relative to the scat-
terer, and to the axial window size. To address the former,
an intensity threshold of 5 dB above the noise level is introduced
and the highest intensity of three laterally adjacent windows is
assigned to all three lateral positions. To address the latter,
the axial window size, which is used to obtain sample spectra,
is selected to minimize the standard deviation of the resulting
scatterer diameter estimates.

We appended an additional step to the end of the original
method, outlined in the previous paragraph to improve the
scatterer diameter estimates produced from our microsphere
samples: the window axial size was selected to minimize
the “normalized” standard deviation of the scatterer diameter
estimate, calculated as the standard deviation divided by the
corresponding mean.

The CoD-SE algorithm was tested on three microsphere
samples with same concentration and mean diameter as in
the AR-SE experiments, see Sec. 2.5. We generated the
theoretical curve using the MATLAB functions of Mie
theory presented in Refs. 31 and 32 and refractive indices of
water and polystyrene33 (nwater ¼ 1.3225þ 0.001i and npoly ¼
1.59þ 0.0025i). We then fitted an exponential function of
the form fCoD ¼ dAeB, where fCoD is the CoD bandwidth,
d is the diameter, and A and B are constants defining the
curve, as this provided an excellent fit within the diameter
range from 3 to 16 μm. Unbiased methods were not identified
to select (1) the standard deviation of the Gaussian window in
the Fourier transform and (2) the extent to crop the edges
of spectra to remove noise. A standard deviation of the
Gaussian window equal to half of the window size, and cropping
of 3.9 nm (100∕4096 points) from each end of the spectral range
were selected through trial and error using the microsphere
samples. Diameter estimates were produced for each image
pixel using 13 different axial window sizes from 3 to 15 pixels,
all with a lateral size of 1 pixel, scanned at 1 pixel steps. At each
step, and for each window size, the Butterworth filter (second
order, zero phase, low pass) cut-off frequency was selected
using Winter’s method, with resulting values in the range of
0.225þ ∕ − 0.004 π:rad∕sample (0.899þ ∕ − 0.016 nm−1).

For tissue samples, we could not find a value for the refrac-
tive index of endoneurium nor its close relative epineurium.
Instead, we used bovine tendon, which is, like endoneurium,
a collagen-rich connective tissue. Therefore, we generated
the theoretical CoD bandwidth curve using refractive indices
of myelin (nmyelin ¼ 1.45528) and bovine tendon (ntendon ¼
1.35329), to which we fitted an exponential function of the
form fCoD ¼ dAeB. Values for the standard deviation of the
Gaussian window in the Fourier transform, the extent to crop
the edges of spectra, and the Butterworth filter parameters
were all carried over from microsphere experiments. Axial win-
dow sizes from 3 to 15 pixels were used to generate diameter
estimates, and then a 3 × 3 scanning window was used to
determine the diameter estimate to use for each pixel location
based on the minimization of the normalized standard deviation.
Scatterer size estimates were directly assigned as fiber diameter
distribution estimates.

In the processed OCT images, each lateral and depth pixels
contained a fiber diameter estimate. An area of interest was
selected from the processed OCT images, which encompassed
the intrafascicle volume, and the diameter estimates at all pixels
within the area formed the sample for analysis of fiber diameter
distribution.
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3 Results

3.1 Epineurium Thickness

3.1.1 Histological analysis

With H&E staining of the fascicle, boundaries in the sciatic
branches were clearly identifiable in light microscopy images
of all three tissue samples, by the change from dark pink stained
epineurium and perineurium tissues to the lighter pink intrafas-
cicle environment mottled with unstained nerve fibers, Fig. 2.
Adipose cells are unstained by H&E. Adipose tissue commonly
appeared in clusters of several cells, each with a diameter of
>20 μm, apposed to the nerve outer boundary in large quantities
in tissue sample 1 and in small quantities in tissue samples 2
and 3, Fig. 2.

The combined epineurium and perineurium thickness was
estimated at 50þ∕−38 μm, 45þ∕−32 μm, and 31þ∕−25 μm
(meanþ ∕ − 1 standard deviation) across the entire light
microscopy image for tissue samples 1, 2, and 3 respectively.

Due to the small thickness of perineurium relative to epineu-
rium, and because one layer of each are always present and
adjacent to one another in the tissue layer separating the intra-
fascicle volume and the outer nerve boundary, from here onward
we refer to the combined epineurium and perineurium tissue
layer as just the epineurium layer.

When the light microscopy images were aligned to the cor-
responding OCT images, and the middle 50% of the nerve boun-
dary was analyzed to match the area imaged and analyzed by
OCT, the localized standard deviations of the epineurium thick-
ness estimates were smaller than those obtained for the entire

Fig. 2 Light microscopy images at 4× magnification, stained with H&E, of tissue sample 1 (a) and tissue
sample 2 (b) of sciatic nerves, and tissue sample 3 (c) of the tibial nerve branch. In all images the scale
bar is 100 μm. Images have been rotated in order that the incident beam in OCT, acquired for four tissue
orientations, coincides with each side of the light microscopy image, where the sides: left, bottom, right,
and top correspond to OCT imaging orientations: 1, 2, 3, and 4, respectively (a). After alignment with
OCT, the top, bottom, and two sides of the nerve within each histological image were identified, shown
with dashed lines in (b), and the middle 50% of the nerve boundary was assigned as the middle 50% in
linear distance between the respective ends, shown with arrows in (b). Tissue features of peripheral
nerve are labeled in (c).
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nerve. This indicates epineurium thickness varies along the
outer boundary. The distribution of the thickness estimates
for tissue sample 1 orientation 3 and tissue sample 3 orientations
1 and 2 showed multiple peaks across the range of values, i.e.,
multimodal. All other tissue samples’ orientations were right
skewed, i.e., favoring smaller thickness, see Table 1.

3.1.2 Average depth-resolved profile techniques

Using the conventional ADRP-structural-data method, to con-
struct the ADRP from the middle 50% of A-scans, estimates of
the combined epineurium thickness from all orientations of
tissue samples 1 and 2 were consistently lower than results
obtained from sciatic nerve presented in the original study
for the ADRP-structural-data technique of 133þ ∕ − 14 μm.18

Tissue sample 3 is from the tibial nerve branch and so is not
directly comparable. Epineurium thickness estimates obtained
using the conventional ADRP-structural-data technique on tis-
sue sample 1 orientation 3 and tissue sample 2 orientation 2 are
within þ1 standard deviation, and tissue sample 3 orientation 4
within þ2 standard deviations of the mean values provided by
measurement from the corresponding histology by light micros-
copy. The remaining estimates are >þ 2 standard deviations,
indicating significant disagreement between values as shown in
Table 1.

Thickness estimates using the five A-scans sliding window
method were consistently lower than those obtained using the

conventional ADRP method. Furthermore, with the exception
of tissue sample 2 orientations 2 and 3, the distribution of
thickness estimates was right skewed, i.e., favoring smaller
thickness. With the exception of tissue sample 2 orientation 2,
all estimates in Table 1 obtained using the ADRP-5Ascan
method are within 1 standard deviation of the values obtained
from light microscopy; however, the right skewed distributions
of data make means a poor measure for comparison. The medi-
ans (Wilcoxon rank sum test, α ¼ 0.05) and analysis of variance
(Kruskal–Wallis test, α ¼ 0.05) of estimates obtained with
the ADRP-5Ascan from tissue sample 1 orientation 3, tissue
sample 2 orientations 3 and 4, and tissue sample 3 orientations
2 and 3 were in agreement with the corresponding histology by
light microscopy.

3.1.3 Autoregressive spectral estimation technique

The layer of epineurium and perineurium tissues was visually
identified as a contiguous area of large diameter scatterers
along the surface of the nerve. The relationship between the
thickness of this contiguous layer of scatterers and the thickness
of the epineurium tissue was investigated using a digital phan-
tom of an epineurium layer, which was constructed using a
50 × 50 element array with each element equal to 0.01 and
within this array several adjacent rows containing values of
1 to mimic epineurium. Application of the AR-SE algorithm
to the phantom showed the epineurium thickness along each

Table 1 Epineurium tissue layer thickness, in μm, estimated from histology, conventional and 5Ascan methods within the ADRP technique, and
with a 10 × 10 window for the AR-SE technique. Mean (standard deviation). A refractive index of 1.41, producing 7.1-μm axial distance per pixel
within nerve tissue, used to obtain ADRP and AR-SE values. Histology estimates are taken across the middle 50% of each orientation, whereas the
ADRP and AR-SE signal analysis techniques are applied to the middle 50% of A-scans in each image. RS, right skewed; MM, multimodal. In the
ADRP conventional column, bold indicates values within þ∕ − 1 standard deviation of the value obtained using light microscopy. Elsewhere, italic
indicates agreement of medians (Wilcoxen rank sum test, α ¼ 0.05) and analysis of variance (Kruskal–Wallis test, α ¼ 0.05) with the corresponding
data obtained using light microscopy.

Light microscopy ADRP: conventional ADRP: five A-scan AR-SE: 10 × 10

Tissue sample 1

Orientation 1 a 77 40 (37) 70 (75)

Orientation 2 a 91 42 (39) 72 (50)

Orientation 3 59 (34) MM 63 48 (28) RS 27 (24) RS

Orientation 4 19 (10) RS 85 37 (27) RS 17 (22) RS

Tissue sample 2

Orientation 1 28 (19) RS 83 44 (28) RS 43 (50) RS

Orientation 2 29 (11) RS 91 61 (32) MM 22 (23) RS

Orientation 3 44 (20) RS 91 56 (34) MM 44 (41) RS

Orientation 4 30 (25) RS 105 33 (34) RS 26 (31) RS

Tissue sample 3

Orientation 1 23 (14) MM 77 57 (38) RS 43 (43) RS

Orientation 2 41 (29) MM 46 28 (29) RS 28 (39) RS

Orientation 3 22 (12) RS 71 40 (37) RS 20 (25) RS

Orientation 4 22 (16) RS 49 51 (35) RS 27 (32) RS

aAdipose tissue prevalent.
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A-scan could be approximated by difference between the base
width of the contiguous scatterer peak and the window axial size
as shown in Fig. 3(a). In nerve samples, due to the presence of
scatterers along the inside boundary of the epineurium tissue
layer, Fig 3(b), we isolated the contiguous scatterer peak by
removing scatterer estimates below 5 μm. We then subtracted
the scanning window axial size from the full-width-half-mean
of the contiguous scatterer peak, in place of the base width,
to estimate the epineurium thickness.

Visual identification of the layer epineurium tissue, as a con-
tiguous area of large diameter scatterers along the surface of the
nerve, is an observation not reported in the original study. The
distributions of thickness estimates produced with the AR-SE
technique are generally right skewed with a long right-hand
tail, which makes the means a poor measure for comparison,
Fig. 4. Indeed, none of the AR-SE thickness estimate means
were in agreement with their corresponding histology by light

microscopy (two sample Kolmogorov–Smirnov test, α ¼ 0.05).
Estimate medians (Wilcoxon rank sum test, α ¼ 0.05) and
analysis of variance (Kruskal–Wallis test, α ¼ 0.05) of tissue
sample 1 orientation 4, all orientations of tissue sample 2, and
tissue sample 3 orientation 4 were in agreement with their
corresponding histology by light microscopy.

It is evident in the box and whisker plots of AR-SE estimates
in Fig. 4 that in all tissue samples and orientations there was at
least one, and typically several, thickness estimates of 0 μm,
which is biologically impossible.

3.1.4 Correlation of the derivative spectral estimation
technique

Scatterer diameter estimates produced by the CoD-SE algorithm
varied depending on the size of the square scanning window,
with larger square windows favoring smaller mean diameter

Fig. 3 Signal intensity and corresponding diameter estimate from the AR-SE algorithm for epineurium
phantom (a) and an A-scan taken from tissue sample 1 orientation 4 (b). Using the phantom’s response to
the AR-SE algorithm it was determined that epineurium thickness can be estimated from the FWHM of
the contiguous scatterer peak observed at the nerve outer boundary.

Fig. 4 Distribution of epineurium tissue layer thickness estimates for tissue samples (a) 1, (b) 2, and (c) 3.
Within each tissue sample boxplot, estimates from histology by microscopy (black), the five A-scans
window method within the ADRP technique (red), and AR-SE technique with a 10 × 10 window
(blue), are grouped together for each orientation.
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estimates with smaller standard deviations. An unbiased method
of selecting this parameter is desirable for practical application
of the CoD algorithm. On OCT data of nerve tissue, a contigu-
ous layer of estimates within the range of 2.2 to 4 μm were pro-
duced around the tissue boundary where the epineurium layer is
expected to reside. Although this narrow diameter range may
potentially provide a means to distinguish the epineurium
layer from the adjacent air on one side and intrafascicle volume
on the opposite side, we did not identify a method to easily iso-
late this layer from scatterers present along its internal and exter-
nal boundaries. In addition, we did not extract a relationship
between this contiguous layer and the epineurium thickness
through the application of the CoD-SE algorithm to a digital
phantom of an epineurium layer. Therefore, we did not pursue
epineurium thickness estimation with the CoD-SE technique
further.

3.2 Fiber Diameter Distribution

3.2.1 Histological analysis

Tissue sample 1 orientation 4 contained easily identifiable
landmarks—in the form of two “humps”—for alignment to
corresponding OCT images, and contained two fascicles with
a difference in fiber diameter distributions that was easily per-
ceptible at 10× and 40×magnifications, Fig. 5(a). Tissue sample
1 orientation 4 was therefore selected for fiber diameter distri-
bution analysis. A minor histological artifact is evident in this
sample where the left fascicle has been pulled away from the
right fascicle during slicing on the microtome, box and whisker
plots of the fiber diameter distributions within the left (grids 1 to
9) and right (grids 10 to 18) fascicles showed higher medians,
upper and lower quartiles, and maximum values in the majority
of grids in the right fascicle compared with grids of the left
fascicle, Fig. 5(b). Further analysis, using a one-way ANOVA
with α ¼ 0.05, revealed significant difference between the
means of grids 1 and 3 within the left fascicle, and no significant
difference between the means of grids in the right fascicle. The
left and right fascicles possessed diameters of 6.1þ ∕ − 2.1 μm
and 10.1þ ∕ − 3.0 μm (mean þ∕ − 1 standard deviation),
respectively. A one-way ANOVA, α ¼ 0.05, also revealed

significant difference in fiber diameter between the two fas-
cicles, indicating a heterogeneous fiber diameter distribution
at the fascicle level.

3.2.2 Autoregressive spectral estimation technique

In each of the microsphere samples, the autoregressive reflection
coefficients decayed rapidly toward zero, Fig. 6(a), which speci-
fied low autoregressive orders for calculating the power spectral
density. Weighted PCA of the power spectral densities produced
similar, but distinguishable, eigenvectors for all three micro-
sphere samples, Fig. 6(b), where, in all cases, the first variable
contributed the most to the first two principal components,
and the second variable contributed the most to the third
principal component. The AR-SE technique estimated the
diameters of microsphere samples of 3.8-, 5.33-, and 8.49-μm
diameter as 3.6þ ∕ − 0.90, 5.0þ ∕ − 1.2, and 7.9þ∕ − 2.1 μm
(meanþ ∕ − 1 standard deviation), respectively, Table 2. These
results show a good diameter estimate accuracy (t-test,
α ¼ 0.05) but with high probability of large (>25%) errors
in individual measurements.

On OCT data from tissue sample 1 orientation 4, Fig. 7(a),
the AR-SE technique predicted a heterogeneous distribution of
fiber diameters in both fascicles, Fig. 7(b). A small difference
between the scatterer diameter distributions in the left and
right fascicles was predicted, with means of 7.6 and 8.1 μm,
respectively, Table 2, and medians of 8.2 and 9.0, respectively,
Fig. 7(c). The diameter distribution estimates were significantly
different to those produced from the corresponding histology
by light microscopy images (t-test, α ¼ 0.05; and Wilcoxon
rank sum test, α ¼ 0.05), Fig. 7(c). Therefore, in the example
analysis of this image, the AR-SE technique correctly predicted
a larger scatterer diameter distribution in the right fascicle
but did not accurately quantify the difference between the two
fascicles’ distributions.

3.2.3 Correlation of the derivative spectral estimation
technique

The CoD technique estimated the diameters of microsphere
samples of 3.8-, 5.33-, and 8.49-μm diameter as 2.6þ ∕ − 0.7,

Fig. 5 Light-microscopy image of histology at 10× magnification of tissue sample stained with LF blue
(a), scale bar is 100 μm. Numbered grid used in fiber diameter distribution calculations are shown over-
laid on the light microscopy image (a), with results presented in box and whisker plots (b) confirming
significant difference in fiber diameter distribution between the left (grids 1 to 9) and right (grids 10
to 18) fascicles.
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2.8þ ∕ − 0.5, and 4.5þ ∕ − 0.3 μm (meanþ ∕ − 1 standard
deviation), respectively, which indicates poor diameter estimate
accuracy for all microsphere diameters, Table 2. All estimates
corresponded to a scanning window axial size of 4 pixels,
selected to minimize the standard deviation, whereas the
smallest window axial size used in the original study was
5 pixels,21 Figs. 8(a)–8(c). Excluding window axial sizes of 3
and 4 pixels from consideration provided a significant improve-
ment in estimate accuracy: 4.3þ ∕ − 1.5, 4.6þ ∕ − 1.5, and
6.3þ ∕ − 1.9 μm, respectively. For all microsphere samples,
the magnitude of diameter estimates showed a decreasing
trend with decreasing axial window size, as did the standard
deviation of estimates, which results in smaller diameter
estimates being favored. Selection via minimization of the
normalized standard deviation removed the effect of the down-
ward trends, and, with window axial sizes of 3 and 4 pixels
excluded, increased the estimate for 5.33-μm microspheres to

5.7þ ∕ − 1.4 μm, Figs. 8(d)–8(f). Estimates for 3.8 and
8.49 μm microspheres remained unchanged, Table 2.

On OCT data of nerve tissue, pixels containing air produced
an estimate of 1.775 μm, which corresponded to a lag of
1500(a.u.) and was the limit of considered range of the power
fit to the theoretical CoD curve, Fig. 8(g). As mentioned earlier,
in Sec. 3.1.4, epineurium produced estimates within the range
of 2.2 to 4 μm. Therefore, to remove air and epineurium,
scatterer diameter estimates of ≤4 μm were discarded in our
analysis of fiber diameter distribution. On OCT data from
tissue sample 1 orientation 4, Fig. 9(a), the CoD-SE algorithm
predicted a heterogeneous distribution of fiber diameters in
both the left and right fascicles, Fig. 9(b). A small difference
between the scatterer diameter distributions in the left and
right fascicles was predicted, with means of 10.4 and 10.9 μm,
respectively, Table 2, and medians of 10.0 and 10.6 μm, respec-
tively, Fig. 9(c). As for the AR-SE technique, the normalized

Fig. 6 (a) The first 40 autoregressive reflection coefficients, used to determine the autoregressive order
when calculating the power spectral density, showing a rapid decay toward zero for all three the micro-
sphere samples. (b) Contributions of the first three variables, v1, v2, and v3, to the first three principal
components, component 1, component 2, and component 3, from weighted PCA of the power spectral
densities of (i) 3.8-, (ii) 5.33-, and (iii) 8.49-μm diameter microsphere samples.

Table 2 Scatterer diameter estimates, in μm, of microsphere samples and the intra-fascicle volume of the left and right fascicles in tissue sample 1
orientation 4. Estimates from histology, a 10 × 10 window in the AR-SE technique, the “CoD-SE: conventional” technique, which selects each
estimate based on minimization of the standard deviation, and the “CoD: normalized s.d. technique, which selects each estimate based on
minimization of the normalized standard deviation. Data are presented as mean (standard deviation) in μm.

Manufacturer’s
data/histology (μm) AR-SE (μm)

CoD-SE:
conventional (μm)

CoD-SE:
normalized s.d. (μm)

3.8-μm microspheres 3.8 (0.25) 3.6 (0.9) 4.3 (1.5) 4.3 (1.5)

5.33-μm microspheres 5.33 (0.25) 5.0 (1.2) 4.6 (1.5) 5.7 (1.4)

8.49-μm microspheres 8.49 (0.25) 7.9 (2.1) 6.3 (1.9) 6.3 (1.9)

Tissue sample 1 orientation 4

Left fascicle 6.9 (2.2) 7.6 (4.8) 9.7 (3.3) 10.4 (4.4)

Right fascicle 10 (3.1) 8.1 (4.6) 9.6 (3.2) 10.9 (4.4)
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CoD-SE technique correctly predicted a larger mean scatterer
diameter in the right fascicle, but did not accurately quantify
the difference.

3.3 Adipose Tissue Identification

3.3.1 Average depth-resolved profile technique

Using the 5 A-scan sliding window method and calculating
the threshold from the entire portion of the residual SNR
curve, regions with adipose tissue apposed to the outer nerve
boundary cross the threshold several times throughout the

depth, Figs. 10(b) and 10(c). In contrast, regions with epineu-
rium crossed the threshold only once Figs. 10(a) and 10(c).
Thus, layers of adipose tissue were qualitatively distinguishable
from epineurium tissue, a finding not reported in the original
study.18 Further studies on this effect are needed to establish
the repeatability of this observation. It was not possible to
identify the outer epineurium boundary beneath adipose tissue,
and, as a result, the thickness of adipose tissue could not be
estimated, nor was it possible to identify the uniformly decaying
region indicating the intrafascicle volume beneath adipose
tissue. The presence of adipose tissue, therefore, reduces the
amount of information available from the ADRP technique.

Fig. 8 (a–c) Mean and standard deviation, or (d–f) mean and normalized standard deviation, of diameter
estimates produced by each window size on microsphere samples. (d–f) Normalizing the standard
deviation, (a–c) removes the decreasing trend with window size which seen in standard deviations.
The CoD bandwidth across the scatterer diameter range of 1 to 16 μm, generated using refractive indices
of water and polystyrene for use with microsphere samples, and refractive indices of bovine tendon and
myelin for use with peripheral nerve samples (g).

Fig. 7 (a) OCT data of tissue sample 1 orientation 4 and (b) the same image after processing with AR-SE
technique, scale bars in (a) and (b) are 100 μm. In (b) the epineurium layer is visible as a contiguous layer
of large diameter scatterers, with diameter on the color scale. The white outlined region in (b) indicate the
areas where data were used to produce the fiber diameter distribution estimate with the CoD-SE algo-
rithm for each fascicle, which are compared against the results from histology by light microscopy in a box
and whisker plot (c). The AR-SE technique correctly predicted a larger scatterer diameter distribution in
the right fascicle but did not accurately quantify the difference between two fascicles’ distributions.
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3.3.2 Autoregressive spectral estimation technique

Adipose tissue was qualitatively identified within the AR-SE
technique as clusters of large diameter scatterers present in
areas of the image, where the contiguous layer of scatterers
on the nerve surface, characteristic of epineurium tissue, was
absent. It was not possible to identify the boundary between epi-
neurium and adjacent adipose tissue, and, as a result, the thick-
ness of adipose tissue could not be estimated. A heterogeneous
distribution of nerve fibers could feasibly also appear as clusters
of large diameter scatterers. Thus, it was not possible to distin-
guish adipose tissue from the intrafascicle volume. Similarities
between AR-SE estimates of adipose tissue, epineurium, and

heterogeneous fiber diameter distribution meant that adipose tis-
sue could not be identified with confidence without referencing
against the corresponding light-microscopy images.

3.3.3 Correlation of the derivative spectral estimation
technique

Adipose tissue appeared as a heterogeneous distribution of scat-
terers within the range of 2 to 19 μm. A method of distinguish-
ing adipose tissue from intrafasicle volume was not found. The
50 μm and greater size of adipose cells, observed in histology by
light microscopy, is beyond the Mie scattering range and so their
true size cannot be estimated using the CoD-SE technique.

Fig. 9 OCT data of tissue sample 1 orientation 4 (a) with white boxes indicating the areas of the left and
right fascicles used for analysis with the CoD-SE algorithm, and the white scale bar bottom left indicating
100 μm. The boxed areas in (a) are shown after processing with CoD-SE algorithm in (b) and (c), for the
right and left fascicles, respectively, with diameter on a color scale. The diameter distribution of estimates
within areas (b) and (c), with values below 4 μmexcluded, are compared against results from histology by
light microscopy in a box and whisker plot (d). The normalized CoD-SE technique correctly predicted
a larger mean scatterer diameter in the right fascicle, but did not accurately quantify the difference.

Fig. 10 Residual SNR curve of epineurium (a) is clearly distinguishable from adipose tissue (b) as the
threshold, when calculated from the entire residual curve, intercepts with a single large peak. A color map
of tissue sample 1 orientation 2 produced by the ADRP-five A-scan method showing only above-thresh-
old residual SNR data (c) with white scale bar bottom left indicating 100 μm; a significant amount of
adipose tissue is visible.
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4 Discussion
A reference value for the combined thickness of epineurium
and perineurium can be estimated by the summation of the
epineurium thickness range in Ref. 8 of 47þ ∕ − 25 μm
for Sprague–Dawley rats weighing 350 to 450 g, and the
perineurium thickness range from Ref. 10 of 3 to 5 μm for
Wistar rats weighing 200 to 250 g, producing a combined
thickness of approximately 51þ ∕ − 26 μm. This reference
value is in broad agreement with the values we obtained from
histology, of 50þ ∕ − 38 μm, 45þ ∕ − 32 μm (meanþ ∕ − 1
standard deviation) for tissue samples 1 and 2, respectively.
The value for tissue sample 3, of 31þ ∕ − 25 μm, is not directly
comparable as it is from the tibial, not the sciatic, branch. It is
evident from the size of the standard deviations, which are large
relative to mean values in both Ref. 8 and our estimates, that
there is a significant variation in epineurium and perineurium
tissue thickness across the cross section of each tissue sample.
The standard deviations for epineurium thickness estimates
obtained using light microscopy were less variable than those
obtained using the ADRP and AR-SE techniques, Table 1,
which we expect is due to the former being a direct measurement
technique, whereas the latter two use more variables in their
calculation.

When the ADRP was calculated using the middle 50% of
A-scans, the technique produced estimates of epineurium thick-
ness with an average of 86 μm, and which were consistently
lower than those in the original paper,18 which reported an aver-
age thickness of 133 μm on sciatic nerve of Sprague–Dawley
rats. Both of these values, 86 and 133 μm, are significantly
above our reference value of 51þ ∕ − 26 μm.8,10 In addition,
all of the epineurium thickness estimates we produced using
this technique were consistently and significantly larger than
the corresponding estimates using histology by light micros-
copy. The technique, therefore, appears to consistently and sig-
nificantly overestimate the epineurium thickness. The accuracy
of epineurium thickness estimates using the ADRP technique
were significantly improved through the addition to the method
of a scanning window containing five adjacent A-scans. The 5
A-scan ADRP technique also resolves the image with a higher
transverse resolution, which is beneficial to practical application
of the technique due to the variable epineurium thickness
observed in the histology by light microscopy. A qualitative
method of identifying adipose tissue through the residual SNR
is a new application of the ADRP technique. However, further
studies are required to evaluate the repeatability of the proposed
method.

Use of the structural and optical differences within the
peripheral nerve to estimate epineurium layer thickness is an
application of scatterer diameter estimation techniques, such
as AR-SE and CoD. In the AR-SE technique, our observation
of epineurium as a contiguous layer of large diameter scatterers
presents a new means to identify the epineurium boundary.
Our initial results of thickness estimates, using the difference
between the full width half mean of the contiguous scatterer
peak and the axial scanning window size, are very promising.
However, the accuracy of thickness estimates was significantly
reduced by the inability of the technique to distinguish between
the tissue layer and large diameter nerve fibers apposed to the
inner tissue boundary, which, accordingly, inflates the affected
tissue thickness estimates. In addition, the tendency of the
AR-SE algorithm to produce some thickness estimates of
0 μm, which is biologically impossible, raises the question of

robustness of using the full width half mean of the contiguous
scatterer peak as an estimate of the base-width. Further studies
on the relationship between the contiguous scatterer layer and
epineurium thickness are needed.

In the CoD-SE technique, the epineurium tissue layers were
visually identified as a contiguous layer of scatterers; however,
a method to isolate this layer and a quantitative method to
analyze the thickness were not identified in the current study.
Application of the CoD-SE technique to estimating epineurium
thickness from the contiguous layer is expected to suffer from
the same problem identified in the AR-SE technique: an inabil-
ity to distinguish epineurium tissue from clusters of fibers adja-
cent to the internal tissue boundary. This inability appears to
be an inherent shortfall in the application of scatterer diameter
estimation techniques to distinguishing tissue layers.

Differences in fiber diameter distribution between fascicles
were correctly identified by both the AR-SE and normalized
CoD-SE techniques, however, the magnitude of this difference
was not estimated accurately by either technique. In the AR-SE
technique, we postulate that the estimate accuracy may be
improved through the use of more biomimetic samples to
populate the coefficient matrix within the algorithm. However,
producing samples that mimic densely packed nerve fibers
within the intra fascicle volume using materials with comparable
refractive indices poses a challenge. Alternatively, spectral data
gathered from fascicles of known fiber diameter distribution
could be used to train the algorithm. Conversely, because
the CoD-SE technique uses a Mie theory-based model to
predict the spectra, the challenge lies in locating suitable values
for the refractive indices of the biological tissue and cellular
layers. Furthermore, the myelinated fiber contains an internal
scattering boundary between the myelin sheath and intracellular
fluid of the axon which has not been considered in the cur-
rent study.

In all techniques, inaccuracy was compounded by the low
axial resolution of our OCT system (10 μm in air) relative to
the lower bounds of epineurium tissue layer thickness
(10 μm) present in some areas of each tissue sample. None
of the techniques could identify the epineurium boundaries
beneath adipose tissue or on the far side of the intrafascicle vol-
ume. Therefore, application of the techniques appears to be lim-
ited in depth, perhaps to as little as the first 100 to 200 μm, due
to limitations of the techniques and to the highly scattering
nature of adipose tissue and nerve fibers. This is in broad agree-
ment with an observation by authors of the original ADRP tech-
nique,18 performed on an OCT system with 11-μm axial
resolution in air, that the ADRP technique is unreliable at
>300 μm depth due to a decrease in the SNR. The authors
of the original AR-SE technique, performed on an OCT system
with 13-μm axial resolution in air, qualitatively implied the
presence of three fascicles within an OCT image of a peripheral
nerve at depths of up to 500 μm,19 although, as the authors point
out, without any validation. Several 100’s of μm depth penetra-
tion is sufficient to image the minor branches of the major nerves
in humans, such as the pronator teres, flexor carpi radialis, and
digital branches of the median nerve.9 Furthermore, some medi-
cal applications, such neural tissue identification as an aid to
surgery,11 do not require significant depth penetration, whereas
others, such as monitoring of epineurium thickness in response
implantation of nerve-cuff electrodes,34 or monitoring of myeli-
nation post crush injury,17 may garner useful information from
the outer layers of the nerve alone.
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The principal advantage of OCT in extracting morphometric
information from peripheral nerve is the wealth of information
present in the OCT signal. As was the case in the current study,
several signal processing techniques can be applied to a single
set of OCT data, obtained from each nerve, to extract multiple
morphometric details such as epineurium thickness (ADRP and
AR-SE techniques), fiber diameter distribution (AR-SE and
CoD techniques), and tissue classification (ADRP technique).
Variation of morphometric details along the length of the
nerve could then be easily accomplished using C-scans.

5 Conclusion
Three OCT signal analysis techniques were evaluated and
improved upon in this study as a means to extract morphometric
details of peripheral nerves. New methods of estimating the epi-
neurium thickness were identified, and the initial accuracy of
results is promising. Further development of these techniques
and the use of higher resolution OCT system are expected to
improve the accuracy. Methods of quantifying the fiber diameter
distribution were not successfully produced; however, factors
that potentially improve the methods were identified. This study
has characterized some of the abilities and limitations of OCT in
extracting morphometric information of peripheral nerve and
identified future research directions in this area.
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