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Abstract

Purpose: For 50 years now, SPIEMedical Imaging (MI) conferences have been the premier forum
for disseminating and sharing new ideas, technologies, and concepts on the physics of MI.

Approach: Our overarching objective is to demonstrate and highlight the major trajectories of
imaging physics and how they are informed by the community and science present and presented
at SPIE MI conferences from its inception to now.

Results: These contributions range from the development of image science, image quality met-
rology, and image reconstruction to digital x-ray detectors that have revolutionized MI modal-
ities including radiography, mammography, fluoroscopy, tomosynthesis, and computed
tomography (CT). Recent advances in detector technology such as photon-counting detectors
continue to enable new capabilities in MI.

Conclusion: As we celebrate the past 50 years, we are also excited about what the next 50 years
of SPIE MI will bring to the physics of MI.
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1 Introduction

Since the first SPIE meeting on medical imaging (MI) in 1971, the conference has played an
integral role in the development of countless technologies for MI. That first conference
(Quantitative Imagery in the Biomedical Sciences I) covered a range of physics-related topics,
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including image quality, image perception, and radiography. In the decade after, physics con-
tinued to play a central role in SPIE meetings of MI until the word “physics” first appeared in a
conference title in 1982 (Physics and Engineering in Medical Imaging). Throughout the 1980s,
annual meetings on MI topics continued to include physics through instrumentation, image for-
mation, image processing, image quality, and more. MI became a regular, annual conference in
1987 and quickly expanded to multiple subconferences, where Physics of Medical Imaging
became a mainstay since 1993. The conference has been largely informed by proffered papers,
reflecting the progression of the field and serving as the premier venue for researchers and sci-
entists to present and discuss important new developments.

The physics topics served MI technology and practice, with progression across modalities,
metrologies, technologies, and applications. For example, the early days of linear systems theory
described the transfer of imaging information through an analog screen-film x-ray system. These
concepts were then applied to the new flat-panel digital detectors that dramatically changed the
face of diagnostic radiology in the 1990s. More recently, the introduction of neural networks
holds the promise of a similar sea change in the delivery of patient care. SPIE has always been
the event where the field has congregated to see the future.

The purpose of this paper is to demonstrate and highlight the major trajectories of imaging
physics and how they are informed by the community and science presented (largely but not
exclusively) at SPIE MI conferences from its inception to now. In a broad stroke, we identify the
field development through SPIE into 11 subfields detailed below (Table 1), which interrelate
with each other in many ways. This list is by no means comprehensive, but rather reflective
of the progression of the discipline as witnessed and highlighted through SPIE MI. As a result,
many categories, modalities, and topics will not be covered due to limited focus and space. In
addition, we aim to highlight a representative sample of SPIE MI papers showing the breadth of
topics presented at SPIE conferences, but these are only a small sample of the many outstanding
papers presented over the years and even then are not chosen to single out the “best” ones. Using
the titles of the top five downloaded abstracts from each year, we generated a word cloud that
represents the most common words (Fig. 1). As can be seen, these represent many familiar topics
including imaging, x-ray, detector, digital, image, radiography, mammography, noise, and more.
They highlight many concepts that together form the scaffolding of what we recognize as the
physics of medical imaging.

Table 1 Major subfields of imaging physics discussed
in this paper.

Subfield

Image science

Image quality metrology

Radiography

FPDs

Mammography

Fluoroscopy

Tomosynthesis

Cone-beam CT

Image reconstruction

Diagnostic CT

PCDs
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2 Image Science

About 50 years ago, scientists met at the SPIEMI conference to present and discuss new discoveries
in image science that represented the start of a knowledge revolution with profound implications for
medical care. This exciting field has moved from the maturing of film-based technologies and early
discoveries in electronic imaging, through the discovery of physical principles that determine the
performance and image quality of new technologies, to recent advances in photon counting tech-
nologies, noise reduction methods, and the use of artificial intelligence (AI) for image reconstruc-
tion and interpretation. This section highlights some of these key contributions to image science.

In the early 1970s, x-ray image intensifiers (XRII) were used with optical beam splitters to
capture moving images both on 35-mm film and analog charge-coupled device (CCD) cameras,
and research was starting on quantitative methods to characterize system performance. Early ideas
on contrast ratio and modulation transfer function (MTF),1 focal spot,2 and x-ray spectral shape3

were all introduced at SPIE meetings where scientists from the food and drug administration
(FDA) were leading the push to develop quantitative metrics for quality assurance in these new
technologies. While Fourier ideas were introduced in the 1950s,4 practical use of MTF was still a
novelty. At the 1979 SPIE meeting, Macovski5 introduced the idea of dual-energy imaging and
Ovitt et al.6 introduced digital subtraction angiography (DSA) including a section on the benefits of
using a digital image format. Thus started the digital revolution in image science.

Image science became a serious topic in the 1980s. Particular contributions came from
Wagner, Burgess, Shaw, Barrett, Myers, and colleagues including the use of statistical decision
theory and signal-to-noise ratio (SNR) concepts. For example, at the 1981 SPIE meeting,
Wagner et al.7 and Tapiovaara and Wagner8 described the importance of the squared-SNR in
detection theory and concepts of information transfer efficiency (Fig. 2). These led to widespread

Fig. 2 X-ray tube voltage dependence of some radiographic task-dependent DQEs. The curves
correspond to 20-cm phantom thickness and are for detecting a small thickness of target material.
Reprinted from Ref. 8.

Fig. 1 Word cloud of most frequent words in SPIE Physics of Medical Imaging paper titles.
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use of the detective quantum efficiency (DQE) including the noise-equivalent quanta (NEQ).9

At the 1984 SPIE meeting they described a generalized DQE approach that described energy-
dependent weights that would improve iodine SNR, something that would not be possible until
the development of photon-counting detectors (PCD).8 A series of articles and presentations
introduced human signal-detection theory to radiographic imaging with the common feature
that detection tasks in radiographic images are often noise limited.10 Much of this work is sum-
marized in an International Commission on Radiation Units & Measurements (ICRU) report
including the importance of Fourier methods and connection to detectability index and ideal
observers in 1996.11 The idea that quantum-based imaging systems could be represented as
a cascade of simple gain and blur processes was introduced.12,13 Barrett led the development
of digital spatial-domain methods to study detectability and system performance that is more
comprehensive and appropriate for digital imaging systems.14–16

The 1990s and 2000s saw widespread adoption of Fourier and spatial-domain metrics for the
description of the image signal and noise,17,18 including developments in cascaded-systems
theory which started in the 1980s to describe the connection between system design and per-
formance metrics.19,20 The use of Fourier metrics continues to this day, with the modern iterative
and nonlinear image processing and noise reduction algorithms necessitating assessment con-
ditions that are needed to satisfy the linearity and shift-invariance requirement of Fourier
methods.21 New concepts in image science are required to keep pace with the growth of AI
to provide the scientific basis of these methods and provide an understanding of their potential
to improve detection tasks and optimize image quality.

3 Image Quality Metrology

Concepts for measuring image quality are intimately tied to developments in image science. At
the beginning of the 1970s most of the imaging systems broadly used were still two-dimensional
(2D) and based on analog imaging detector configurations, e.g., based on screen-film systems or
image intensifier tubes. These were tested regarding their image quality by using Fourier-based
metrics such as MTF and DQE, but also low-frequency contrast tests, field evaluation, focus
determination, and easy contrast tests as, e.g., presented in 1974.1 Shaw and van Metter devel-
oped a theoretical approach for MTF and DQE measurements of screen-film systems in 198422

while together with Bunch, they looked into signal-to-noise measurements of such systems,23

which was in a way following the descriptions by Wagner and Weaver in 1974.24 Wagner and
Brown25 presented in 1984 a “more unified analysis of medical system SNR characteristics”
(Fig. 3), representing the NEQ of three different screen-film-systems. The approach presented
in this paper derived the ideal observer SNR based on statistical decision theory, which linked
measurable values to the decision required in radiological imaging. This approach was further
followed and investigated.15 The link between physics-based measurements and the task of
detection was established more clearly in the following years.16 In parallel, studies describing
the human observer performance on MI systems were conducted.

Beginning with the broader implementation of CT systems as well as digital imaging detec-
tors for radiography and fluoroscopy, there were new lines of image quality assessment for such
systems either based on Fourier-based or spatial-based approaches, both having advantages and
disadvantages. It became clear, that the limitations of the digital systems had to be understood
and that the image output might depend on the information content to be detected. Thus, papers
were looking for the information content of the information patterns.26 To keep pace with the fast
development of new types of imaging systems, methods were developed to more practically
assess achievable image quality and the ability to provide an estimate of the detectability of
lesions or pathology using such imaging systems. An example study evaluated the generalized
NEQ and a detectability index for tomosynthesis and cone-beam CT.27 In addition, efforts are
being made to measure the image quality or relevant descriptors of it no longer on phantom
images or for artificial tasks but in the patient images itself first introduced at SPIE.28,29

This has also extended to 3D imaging like CT,30–32 found to be directly relatable to diagnostic
performance.33 It can be hoped that by such approaches, closer links between diagnostic per-
formance and the determined image quality can be gained in the future. This might lead to new
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concepts for optimization based on targeting acceptable image quality levels.34 This is of great
importance given the broad range of developments for new types of imaging systems and image
reconstruction methods based on AI. Especially with respect to AI-based methods, new
approaches for image quality assessment and quality assurance will be needed.

4 Radiography

Radiography is the oldest MI modality, and while its earlier developments predate SPIE, the
Physics conference has provided many significant contributions. Because of its importance
as a modality and relative simplicity in implementation, radiography has long been at the fore-
front of adopting new technologies and ideas. By 1980, the advantages of digital radiography
(DR) were clear, including advantages in dose, scatter reduction, ease of operation, data trans-
mission, image storage, flexible display capability, and image manipulation such as edge
enhancement, filtering, and subtraction.35 While analog radiology was still well entrenched and
continued to be important,36,37 DR extended the lessons learned from analog technologies to
offer new advantages. The SPIE Conference on Digital Radiography in 1981 already recognized
applications in DSA,38 digital tomosynthesis,39 and dual-energy radiography (Fig. 4).40

Although the advantages of digital systems were described early on, improving their image qual-
ity and their acceptance in clinical practice still took considerable time and effort. For example,
pixel size may be an obvious consideration for spatial resolution, but the effects of converter
material and thickness, photodiode (PD) gain, and electronic noise all play an important role in
image quality. Other considerations include field coverage, uniformity, quantum efficiency, sen-
sitivity, dynamic range, acquisition speed, frame rate, noise characteristics, and cost. Initial DR
systems were based on computed radiography (CR), which uses a photostimulable phosphor to
capture and store the image, which is then read out with a laser system.41,42 While CR has a large
dynamic range, is digital and is portable, imaging plates must be processed through a reader and
intrinsic image quality was seen as lacking.43 Numerous other DR approaches were developed,44

but the second generation of DR largely made use of flat-panel detectors (FPD) systems, which

Fig. 3 NEQ spectrum for three calcium tungstate screen/film systems at optical density = 1.0.
Reprinted from Ref. 25.
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directly readout digital images. In addition to the instant readout, the advantages of FPDs in high
efficiency and spatial resolution made them almost ideal for radiography.45

The developments in radiography were intertwined with developments in image science and
detectors (described in those sections). Even today, radiography continues to evolve, with recent
advances including dark-field chest radiography46 and twin-robotic arms for flexible positioning
and setup.47

5 Flat-Panel Detectors

The development of digital FPD (also referred to as flat-panel imagers) has been central to the
development of many x-ray based modalities, including radiography, mammography, fluoros-
copy, tomosynthesis, and cone-beam CT. The SPIE MI physics conference has always been the
platform for presenting original ideas of the design, fabrication, and evaluation of FPD, with over
300 articles on this topic since 1991. With the breadth of knowledge in DR and imaging physics
in the first two decades of SPIE MI, it was natural (in 1991) to hear the first presentation on
the application of amorphous silicon (a-Si) PD in radiotherapy and diagnostic imaging, which
was later referred to as the indirect FPD (Fig. 5).48 The following year (1992) the first paper
on amorphous selenium (a-Se) based, or direct conversion FPD was presented.49 This decade
saw a rapid growth of the number of SPIE presentations on both direct and indirect FPD, and an
increasing number of contributions from the industry while FPD was being commercialized.50–55

As FPD technology made its way through clinical translation, image quality evaluation and its
standardization became an important topic of the conference.56,57 Investigations presented at the
conference became the foundation for International Electrotechnical Commission and other
major standards for the evaluation of FPD.58,59 Modeling techniques, such as the cascaded linear
systems model, for FPD were extensively presented at the conference, and used to optimize FPD
designs and identify potential areas of improvement.60,61 It was realized that the low dose

Fig. 4 Digital pyelographic image (a) and corresponding dual-energy soft tissue subtraction view
(b) for a patient with renal carcinoma. Reprinted from Ref. 40.

Fig. 5 Schematic representation of a portion of a flat-panel imaging array. (a) Top view showing
details of the PD sensors, field-effect transistors (FETs), and data, FET, and bias lines. (b) Cross-
sectional view of sensor-FET combination for a single imaging pixel. Reprinted from Ref. 48.
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performance of FPD is not x-ray quantum noise limited at the lowest exposures experienced in
fluoroscopy. It became a major goal of the community to develop new FPD concepts and mate-
rials that could overcome this remaining issue of FPD.

Since 2000, many SPIE MI contributions have focused on novel ideas of how to improve
the signal gain to overcome electronic noise in FPD. These ideas fall into two categories:
(1) Decrease electronic noise by incorporating pixel amplification, referred to as active pixel
sensor (APS); (2) Increase signal gain by using high conversion gain x-ray photoconductors,
or optical detectors with avalanche gain. In the former category, pixel amplification was designed
incorporating three transistors using either a-Si or polycrystalline Si (Poly-Si)62,63 with prototype
pixels or small arrays fabricated and tested. The lowest noise APS was achieved with crystalline
silicon (c-Si) CMOS sensors. This was made possible with the advancement and cost-reduction
in wafer-scale CMOS sensors, which were tiled to make FPD for medical x-ray imaging.64–70

To increase signal gain, avalanche amorphous selenium has been investigated for both direct
and indirect detectors.71,72 For x-ray quantum noise limited performance down to a single x-ray
photon, a gain of 10 is sufficient.73 For direct FPD, a variety of direct conversion materials were
presented at the SPIE MI conference and drove industrial development for polycrystalline lead
oxide (PbO), lead iodide (PbI2), mercuric iodide (HgI2), and cadmium telluride (CdTe).74–77

More recently, organic–inorganic perovskite direct conversion FPD began to be presented at
SPIE MI,78 and we anticipate more work to be presented in future meetings, which will provide
guidance for further development necessary for clinical translation and commercialization.

6 Mammography

The development of mammography over the last 50 years has been truly remarkable. National
breast cancer screening programs have been introduced, which has had a huge impact on wom-
en’s health, and the technical development has been extensive. In the early 1970s when the first
SPIE MI symposium started, national breast cancer screening programs had not started yet;
mammographic examinations were performed for diagnostic purposes. The first significant
screening program was started in New York in 1963.79 A decade later, screening trials were
underway or had been carried out in a few different countries, e.g., USA, Sweden, and the
UK.80,81 From that point in time, national screening programs were implemented and became
a strong driving force for new inventions in breast imaging. The development of the x-ray detec-
tor technology has been an important part of the SPIE MI symposia, together with other inven-
tions in mammography.

X-ray mammography was originally carried out with nonscreen films, to achieve the high
spatial resolution required for detecting calcifications. In the 1970s, dedicated screen-film sys-
tems for mammography were introduced with a 10 times reduction in dose.81,82 Early attempts to
convert the analog technique to digital included replacing the screen-film system with computed
radiography42,43 and slot-scan detectors.83 Later the detector was replaced by FPDs, with a much
faster read-out and significantly better DQE (Fig. 6).64,84–86 Shortly after the FPDs were intro-
duced, PCDs based on crystalline Si87 or multichannel gaseous ionization chamber were
invented.88 Recently, a new generation of PCD based on GaAs was proposed.89

In parallel with the developments of new and improved mammography detectors, other tech-
niques were invented to further increase the diagnostic performance of mammography and in
particular screening. In the 1980s, automatic exposure control (AEC) systems and dedicated
antiscatter grids for mammography were developed.90 The AEC systems consisted originally
of an ion chamber that controlled the exposure, whereas, in modern digital systems, the signal
from the detector itself controls the exposure. The antiscatter grid prevents to a large extent
the scattered radiation from reaching the detector, at the cost of an increased dose to the breast
by a factor of 2.5 to 3. Recently, the virtual grids have shown promise to replace physical grids
with the potential for reduced dose.91

As mammography became digital, new inventions became possible. Contrast-enhanced
mammography,92,93 digital breast tomosynthesis,94–97 and contrast-enhanced breast tomosynthe-
sis,98,99 as well as breast CT,100,101 have been invented. All these techniques have shown higher
sensitivity and/or specificity than 2D digital mammography. Recently, mechanical imaging has
also shown the potential to improve specificity.102,103
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7 Fluoroscopy

The advent of the XRII in the 1950s marked the adoption of x-ray fluoroscopic imaging and
enabled the use of x-ray imaging during interventional and surgical procedures. An XRII con-
sists of a cesium iodide phosphor deposited directly on the photocathode of an intensifier tube.
Impinging x-ray photons create electrons that are accelerated and minified until hitting an output
phosphor, producing an image ∼105 times brighter than the input image. By capturing the
∼2.5-cm diameter output image with a video camera, an interventionalist could visualize
high-contrast devices and contrast-filled vessels in real-time on a TV screen. Some of the earliest
work at the SPIE MI conference in the 1970s characterized the image performance of XRIIs.1

At around the same time, analog-to-digital conversion was applied to the video camera output
signal, permitting digital storage and manipulation of x-ray images. This capability led to the
first major revolution in fluoroscopy, the invention of DSA.104,105 Early images published in
1978 are shown in Fig. 7.6 Through the 1980s, digital technology also enabled dual-energy sub-
traction for bone and soft-tissue removal,5 and laid the foundation for automated image analysis
such as blood-flow (contrast-flow) measurement, device detection, and motion and image-dis-
tortion correction. In the same timeframe, further improvements in image quality were achieved
by replacing the video camera with solid-state detector technology (e.g., CCD cameras).106

The second major revolution in x-ray fluoroscopic imaging arrived with the replacement of
the XRII by the digital FPD. The development of flat panel technology through the 1990s as
described above, but it is interesting to note that the SPIE MI conference provided a forum where
industry and academia discussed technology developments in an open and cooperative environ-
ment that is not often seen in scientific exchanges.53 The transition to a fully digital, geomet-
rically accurate, wide dynamic range, linear signal image acquisition system enabled several
important applications for fluoroscopy systems. Quantitation became possible and a significant
body of work correcting for detector nonidealities such as lag,107 bright-burn, nonlinearity, and
patient and detector internal scatter was developed. Multimodality integration—that is overlay
of 3D information into a real-time 2D fluoroscopic image using rigid or nonrigid registration
algorithms—also became a standard component of fluoroscopy-guided minimally invasive

Fig. 6 Clinical mammography images. The magnified inset is an enlargement of the biopsy
marker. (a) Indirect conversion CsI + CCD (40-μm pixels). (b) Direct conversion selenium detector
(70-μm pixels). Reprinted from Ref. 84.
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procedures, along with automatic device detection, device tracking, and device enhancement
algorithms.108,109 The basics of image quality and dose reduction in x-ray fluoroscopy will
always be a focus at SPIE MI conferences; new technologies such as dynamic prepatient colli-
mation, AI-based noise reduction, novel antiscatter grids, and more will continue to enable ever-
more-complex minimally invasive image-guided interventions.

8 Tomosynthesis

About 50 years ago, at the time of the first SPIE MI meeting, tomographic imaging was only
available through conventional tomography using film as the image detector. In the early 1970s,
a number of investigators started to replace film with image intensifiers thus modifying these
analog systems to enable digital capture and analysis. Baily and colleagues110 described a fluo-
roplanigraphy system in 1971 with the potential for image digitization and subsequent image
processing. A decade later, they described the realization of a digitized tomography system.111 At
the same time, CT scanners in projection (Scout view) mode were used to directly acquire digital
radiographs that were used to synthesize arbitrary slice images.39 It was not until the beginning of
the new millennium that the development and readiness of flat panel digital detectors capable of
rapid image read-out enabled viable tomosynthesis imaging systems to be the subject of wide-
spread research and eventual clinical use. At this time, there was growth in system design and
optimization research for musculoskeletal, thoracic, and mammographic applications. In addi-
tion, there was significant progress in the development of different reconstruction approaches.
These included matrix inversion algorithms,112 filtered back projection,113,114 and iterative
techniques.94,115

The initial impetus for tomosynthesis imaging was to improve thoracic imaging but this rap-
idly evolved to include musculoskeletal imaging applications116 and the development of systems
that could produce tomosynthesis images of all anatomies.117 Radiographic tomosynthesis
research has since progressed to rigorous clinical trials demonstrating efficacy118 and continued
efforts to apply new scientific and technical developments to enable novel clinical imaging appli-
cations including intraoral dental imaging119 (Fig. 8) and real-time imaging in radiotherapy.120

Given the lack of an alternate tomographic imaging modality like CT, it is not surprising that
the majority of tomosynthesis research and development has been focused on breast imaging.
There continues to be considerable research into system design and optimization including pio-
neering work on tomosynthesis optimization at SPIE,121 without a consensus on key factors such
as optimal sweep angles, number of projections, and step-and-shoot versus continuous acquis-
ition. These debates are likely to grow with increasing options resulting from the incorporation of
new developments in x-ray sources, scanning geometries, reconstruction algorithms, and dose
variation and reduction schemes. The need for the standard projection view in the exam and the
generation and role of synthesized 2D views from the tomosynthesis data also continue to be
investigated. As tomosynthesis has become the standard of care imaging technique for breast
cancer screening, research and development efforts are turning from system design and valida-
tion to improving image quality, investigating novel imaging geometries and reconstruction

Fig. 7 (a) Dog’s neck with dilute contrast in the carotid arteries (not visible). (b) Subtracted image
showing contrast. (c) Subtracted image with contrast stretching in the display. Reprinted from
Ref. 6.
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approaches, and developing tools and metrics for quality control including the development of
dedicated phantoms for evaluating tomosynthesis systems.122 Research trends include the expan-
sion of tomosynthesis to include contrast-enhanced exams123 and fusion with other imaging
modalities, such as ultrasound.

Distributed x-ray sources provide unique imaging advantages and the opportunity for more
flexible system design. Some of the earliest tomosynthesis research and development utilized a
scanning-beam x-ray source in an inverse geometry in which the area of the source was much
greater than that of the detector.124 This system was designed for dynamic, real-time tomographic
cardiac imaging. In the last decade, the application of distributed sources to tomosynthesis has
become a growing area of research interest.125 Undoubtably this trend will continue as distrib-
uted source array technology matures and becomes integrated into commercial systems. These
source arrays enable greatly increased flexibility in system design and reduced acquisition times—
ultimately enabling investigation of new or improved applications in breast and body imaging.

9 Cone Beam CT

Cone-beam computed tomography (CBCT) is among the important MI technologies for which
SPIE MI has been an important forum in reporting early developments and clinical translation.
Research at the turn of the century focused on the incorporation of FPDs in novel CBCT scan-
ning systems and set the stage for systems to be developed in the following decades for a spec-
trum of diagnostic and interventional applications. Early work incorporated an FPD on a CT
scanner gantry for possible application in 3D angiography.126 CBCT was also developed for
image-guided radiation therapy (IGRT),127 which grew quickly to represent the standard of care
in IGRT. That work was extended to mobile and fixed-room C-arms for CBCT in image-guided
surgery and interventional radiology (Fig. 9).128,129 Applications of CBCT in diagnostic imaging
were soon to follow, including CBCT technologies for 3D breast imaging130,131 as well as
musculoskeletal imaging.132

CBCT image quality was an important topic throughout the development of such emerging
systems to identify and mitigate the key factors that limited image quality, such as detector per-
formance, x-ray scatter, and other sources of image noise and artifact. Such work drew from the
foundations of MI physics, modeling of the imaging chain, and task-based imaging performance
evaluation that were the hallmarks of the Physics of Medical Imaging conference throughout the
1980s (for screen-film systems) and the 1990s (for FPDs). Extending such models to CBCT,
fully 3D NPS, NEQ, and task-based detectability index was applied to CBCT systems.133 The
role of x-ray scatter as a limiting factor in CBCT was well appreciated, and scatter artifact

Fig. 8 (a) 2D image of a tooth phantom containing a metallic filling, caries, and fractures.
(b) Reconstructed tomosynthesis slice in the plane of the filling and the caries lesion.
(c) Reconstructed tomosynthesis slice in the plane of the fractures. Note the increased detail
in the lesions (arrows) and alveolar bone in (b) and (c). Reprinted from Ref. 119.
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correction methods ranged from parametric or Monte Carlo modeling134 to beam-blocker and
related methods.135 As CBCT systems found prevalent clinical application in diagnostic and
image-guided settings, ongoing work identified patient motion as an important aspect of image
quality degradation, with a number of motion compensation methods under development.136

As CBCT systems found broad clinical application and their image quality limitations were
fully appreciated, novel means of 3D image reconstruction formed an important area of research.
Such work proceeded closely in step with similar activity in diagnostic helical CT, as described
in greater detail below. Optimization-based alternatives to 3D filtered back projection were an
active area of research, including model-based image reconstruction (MBIR) methods with
improved noise-resolution tradeoffs. MBIR methods were demonstrated for CBCT,137 including
predictive models for imaging performance in MBIR138 and extension to novel image acquisition
protocols—e.g., noncircular orbits.139 MBIR models were also extended to incorporate patient-
specific prior information (e.g., from a previous CBCT scan) for CBCT applications in image-
guided interventions.140,141 Deep neural networks represent an important emerging basis for
CBCT image reconstruction142 raising important opportunities to improve image quality, to
understand the fundamental limits to deep learning performance, and to better inform such
approaches by the incorporation of physical models.

10 Image Reconstruction

Advances in image reconstruction have been critical to the development of diagnostic CT from a
2D parallel-beam imaging modality to the current fully 3D multidetector technology, as well as
for the development of CBCT imaging for interventional radiology, oncology, and breast cancer
screening and diagnostic. Presentations at the conference have closely followed and enabled
these developments. To transition from parallel-beam CT to the current state-of-the-art CT tech-
nology, there once was the crucial need to discover how to perform a filtered back-projection
reconstruction in the direct fan beam geometry when only a short scan of data is available. The
problem was in the partial redundancy of the data, which appeared incompatible with the appli-
cation of the ramp filter. Giving up on equal data weighting, in favor of utilizing a differentiable
data weighting function,143 was a major finding that not only supported the targeted application
but enabled, through various extensions, the development of single-slice spiral (a.k.a. helical)
CT in the early 1990s,144,145 the expansion to multislice CT at the beginning of the century,146

and the final transition to the fully 3D geometry of nowadays,147–149 alongside with a simulta-
neous expansion of CT applications to include cardiac imaging.150,151 While judicious data
weighting schemes helped produce images of useful quality, it was understood early on that
theoretically exact and stable reconstruction would require solving the fully 3D cone-beam

Fig. 9 Various CBCT images: (a) surface rendering of skull phantom, (b) sagittal image of an
amputated limb, and (c) transaxial image of a low-contrast phantom with a steel needle inserted
in the field of view. Reprinted from Ref. 128.
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image reconstruction problem.152,153 This problem was extensively investigated for a circular
trajectory (Fig. 10),154–157 and the results have been beneficial for large cone angle diagnostic
CT as well as cone beam imaging with FPDs. Down the road, amazing solutions emerged to
handle axially truncated data as needed for multislice CTwith a helical acquisition,158,159 which
played a major role in terms of algorithm refinements balancing cone-beam artifacts together
with efficient use of radiation dose and mitigation of artifacts due to beam hardening and patient
motion. Over time, great progress was also made for various other geometries,160–164 which will
support future advances in cone-beam CT with large area detectors.

Many applications of x-ray CToccur in a busy clinical environment, where fast workflow is a
necessity. For this reason, image reconstruction scientists have also devoted important effort to
the development of fast algorithms, by using more efficient mathematical reformulations,165–168

or by identifying ways to benefit from novel computing hardware.169–173 Such developments
have been and remain critical as CT image reconstruction is evolving from linear to nonlinear
methods, either with optimization techniques or deep learning paradigms or with a combination
of these tools.174–178 While optimization methods are still under investigation for CT, it is worth
mentioning that they have been used for more than two decades in PET, due to the much smaller
dataset size, with important advances then presented at the conference.179–181 Last, we note that
the conference served as an important venue to support image reconstruction developments in
tomosynthesis for breast imaging, with contributions spanning dedicated analytical formulas,114

optimization techniques,182 and deep learning approaches.183

11 Diagnostic CT

Since its introduction in 1972, CT has advanced at a rapid pace and is now a pillar of radiological
diagnosis. The first CT systems were mere head scanners, with an acquisition time of several
minutes per image. In the 1980s whole-body CT scanners became available, with scan times per
image reduced to a couple of seconds and significantly improved spatial resolution. However,
only single axial slices of the patients’ anatomy could be acquired. The ability of continuous
rotation led to the development of spiral (helical) CT in the early nineties (Fig. 11)—this was a
significant breakthrough in the history of CT.144,184,185 For the first time, volume data became
available without the risk of mis- or double-registration of anatomical details, albeit initially with

Fig. 10 Different cone-beam CT reconstructions of simulated phantom. Top row: xz plane, bottom
row: yz plane: (a) original phantom, (b) Feldkamp-type half-scan reconstruction, and (c) Grangeat-
type half-scan reconstruction. Reprinted from Ref. 154.
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limited scan ranges. Larger volume coverage in shorter scan times with thinner image slices was
made possible by the widespread introduction of multidetector row computed tomography
(MDCT) by all major CT manufacturers in 1998.186,187 As a result of faster gantry rotation,
MDCT also expanded into areas previously considered outside the scope of third-generation
CT scanners, such as ECG-controlled cardiac imaging.188 Interestingly, the basis for CT image
reconstruction with optimized temporal resolution was already laid in the early 1980s.143 The
first decade of the 20th century was characterized by a race for more and more detector rows—4,
16, 32, 64-row scanners became available at a rapid pace. Consequently, new image reconstruc-
tion techniques came into focus that could cope with the increasing cone angles of the meas-
urement rays.189,190 Iterative reconstruction was investigated as a method to better account for
the statistical properties of the CT data.191

Increasing clinical experience with MDCT indicated that adding even more detector rows
alone would not result in greater clinical benefit. Instead, new CT concepts were evaluated
to overcome the remaining limitations of MDCT. While several innovative CT designs never
found their way into clinical routine,192 two concepts held their own over the years: wide-area
detector CT and dual-source CT. As a method of extending CT from purely morphologic to
functional imaging, spectral CT imaging has experienced a renaissance. New reconstruction
schemes193 were proposed, techniques to acquire dual-energy CT data were evaluated,194 and
different ways to produce meaningful clinical results were investigated.195–198 Most recently,
another novel CT concept has gained increasing interest in the CT research community: pho-
ton-counting CT (described in greater detail below). The first results of photon counting CT
systems with increasing maturity demonstrated potential clinical benefits (Fig. 12).199–202 As
the latest exciting development, machine learning has now also made its way into CT image
reconstruction and is currently drawing a great deal of attention.203,204

12 Photon Counting Detectors

Photon counting is an intuitive way of detecting x-rays, counting them one by one, and meas-
uring the energy for each x-ray using programmable thresholds. In nuclear imaging, such as
single-photon emission computed tomography and PET, this has been the gold standard from
the start. One advantage compared with energy integrating x-ray detectors is that electronic noise
can be eliminated, enabling lower-dose imaging. The second advantage is that since the energy is
measured for each x-ray, the information can be weighted to optimize the image quality when the
image is formed. The energy measurement can also be used for improved separation between

Fig. 11 Schematic diagram for constant speed helical scanning (CSH), where t indicates time.
The gantry rotational angle β is shown in (a) and the state of the x-ray source is shown in (b). The
table location z is shown for CSH in (c). Reprinted from Ref. 144.
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calcium and iodine, for example. Today’s dual-energy solutions have significantly worse energy
resolution and/or require unfavorable trade-offs in spatial resolution and workflow. PCDs are
direct conversion with reduced pixel size, drastically increasing the spatial resolution. The first
paper describing a PCD87 that led to an FDA-cleared x-ray imaging system was presented at
SPIE MI 2000 (Fig. 13). At that time, it was the only photon-counting paper at the conference.
Since then, photon counting has grown into a major topic at the MI conference, and a large part
of the progress in this field of research can be attributed to presentations and discussions in
that forum.

One important area of progress has been on the hardware side with improved sensors and fast,
low-noise application-specific integrated circuits.201,205–207

A major challenge with photon counting is the high incident rate of x-rays, and the following
pile-up of events and charge sharing between pixels. Several contributions helped both to evalu-
ate the impact on image quality and to suggest correction algorithms or detector design strategies
to mitigate the problems.208–212 Other noteworthy contributions investigated the potential for
photon counting in terms of energy weighting and material basis decomposition.213–216 Several
promising clinical applications have been suggested, such as dual contrast imaging of the liver,
kidney stones, and crystal-related arthropathies, cardiovascular imaging, thoracic imaging, and
neuroradiology.199,217–220 Two major technology platforms are currently being developed for
photon-counting CT.221 The first uses a cadmium-based (CdTe or CZT) sensor with a thickness
of a few millimeters.199 The second is based on so-called “deep silicon,” with sensors being
mounted in an edge-on geometry with several centimeters of depth. One system recently
received FDA clearance, and we can expect regulatory clearance for several more systems

Fig. 12 Chest patient images from conventional energy integrating detector (EID) CT and PCDCT
comparing pathological features such as cystic air spaces (red arrows, upper row) and lung nod-
ules (red arrows, bottom row). The conspicuity of anatomic details noticeably improved in PCD-CT
images. The PCD-CT image also exhibited lower image noise than EID-CT at matched acquisition
dose as shown in the ROI measurements. Reprinted from Ref. 199.
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in the next few years. Photon counting also paves the way for future clinical applications such as
phase-contrast imaging. Ultrahigh spatial resolution down to 1 μm can be feasible,222 and a
pseudo-monochromatic beam can be achieved since the x-ray wavelength is measured.223

13 Conclusions

As these MI technologies developed from primitive concepts and prototypes to competing for
commercial systems in routine use for many clinical applications, the SPIE MI meeting has
served as an effective interface between the basic research of academic scientists, technology
development of engineers, and the dissemination of industry research and development. The
SPIE MI community played an instrumental role in many key developments in the past 50 years
by sharing new ideas and results, learning from each other—ranging from experts in short
courses to students giving talks and presenting posters, and forming lasting friendships and col-
laborations. That journey has never been simple. For today’s community, it may be difficult to
appreciate that the very concept of a “digital” MTF or DQE was controversial in the mid 1990s,
yet today it is acknowledged as the methodology that accurately describes digital system per-
formance and allows for system performance optimization. The recent discussions on neural
networks, their configuration, the issues associated with their “learning/training,” and the evalu-
ation of their performance bear the same hallmarks of the birth of another game-changing tech-
nology. The SPIE MI conference will undoubtedly play a pivotal role in the development of this
nascent field and many others that hold so much promise for the future betterment of patient care,
and we are excited about what the next 50 years of SPIE MI will bring.
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