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Abstract

Significance: Wide-field optical imaging (WOI) can produce concurrent hemodynamic and
cell-specific calcium recordings across the entire cerebral cortex in animal models. There have
been multiple studies using WOI to image mouse models with various environmental or genetic
manipulations to understand various diseases. Despite the utility of pursuing mouse WOI along-
side human functional magnetic resonance imaging (fMRI), and the multitude of analysis tool-
boxes in the fMRI literature, there is not an available open-source, user-friendly data processing
and statistical analysis toolbox for WOI data.

Aim: To assemble a MATLAB toolbox for processing WOI data, as described and adapted to
combine techniques from multiple WOI groups and fMRI.

Approach: We outline our MATLAB toolbox on GitHub with multiple data analysis packages
and translate a commonly used statistical approach from the fMRI literature to the WOI data. To
illustrate the utility of our MATLAB toolbox, we demonstrate the ability of the processing and
analysis framework to detect a well-established deficit in a mouse model of stroke and plot
activation areas during an electrical paw stimulus experiment.

Results: Our processing toolbox and statistical methods isolate a somatosensory-based deficit 3
days following photothrombotic stroke and cleanly localize sensory stimulus activations.

Conclusions: The toolbox presented here details an open-source, user-friendly compilation of
WOI processing tools with statistical methods to apply to any biological question investigated
with WOI techniques.
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1 Introduction

Functional neuroimaging has enhanced our study of systems neuroscience and understanding of
neural networks.1,2 Mainly, this has been accomplished with blood oxygen level-dependent
(BOLD) fluctuations in functional magnetic resonance (fMRI) data in human subjects.3 In order
to better understand human conditions, there has been an increase in functional neuroimaging in
animal models, also performed using fMRI.4–6 However, the relatively small size of the mouse
brain offers multiple technical and logistical challenges with fMRI. Therefore, there has been a
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parallel development of wide-field optical imaging (WOI) techniques in the mouse, yielding
similar blood-based surrogates of neural activity at a similar spatial scale with various logistical
tradeoffs versus fMRI.7 The advent of genetically encoded calcium indicators (GECIs) enables
cell-specific labeling and led to increased temporal resolution for WOI compared to traditionally
measured hemodynamics.8–10 Combined hemoglobin and fluorophore imaging is readily avail-
able with optical imaging systems and harnesses the advantages of GECIs as well as maintains
a translatable blood-based recording directly comparable to human fMRI. WOI analysis faces
many of the same procedural steps and therefore difficulties as those experienced with fMRI
analysis, such as data processing, visualization, and statistical testing. However, the relative nov-
elty of WOI compared to fMRI means that there is a need for many of the solutions within the
fMRI community to be translated into the WOI data analysis communities. We have developed
a toolbox (MATLAB) that addresses a number of fundamental concerns.

One of the biggest statistical challenges within the functional neuroimaging community is
the problem of correcting for multiple statistical tests. Many solutions have been proposed within
the fMRI community,11,12 however, in general these have not been translated into an easy-to-
use WOI toolbox. Historically, functional connectivity (FC) is examined using a seed-based
approach.13 For seed-based maps, common practice includes performing a pixel or voxel-wise
statistical test (e.g., Student’s t) resulting in thousands of tests being performed within the field-
of-view (FOV). The most stringent correction (i.e., Bonferroni) assumes each statistical test is
independent.14 This is certainly not the case when examining neighboring pixels within a brain
region for multiple reasons. For most mesoscopic WOI instruments, blurring by tissue light
scattering brings the effective full-width half-maximum (FWHM) to a size that spans multiple
pixels thus rendering each pixel not independent from an instrumentation point of view.
Additionally, from a biological point of view, it is reasonable to assume an amount of depend-
ence between neighboring pixels within the same brain region. A more plausible approach to
handle the multiple comparisons problem that has become fairly standard for fMRI is the use of a
clustering analysis, coupled with random field theory, to weight larger regions of interest (ROIs;
i.e., large clusters) of contiguous neighboring significant pixels as more likely to be a statistically
significant finding than small ROIs.15,16 In this paper, we translate the clustering approach to
WOI pixel space application.

Here, we provide a mouse optical data processing toolbox to streamline and make processing
steps transparent and user-friendly. Within it, we adopt the fMRI cluster size-based approach to
determining statistical significance and apply it to wide-field optical FC mapping. We demon-
strate the utility of this toolbox and various analytical packages within the context of photo-
thrombotic stroke and sensory stimulus activations.

2 Methods

2.1 Animals

Four 3- to 4-month-old mice (two male, two female) were imaged at baseline (Day 0) and on
Day 3 post photothrombotic stroke to left somatosensory forepaw cortex. All mice were
Thy1-GCaMP6f [Jackson Laboratories Strain: C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim;
stock: 024276]. These mice express the protein GCaMP6f in excitatory neurons, primarily
in cortical layers ii, iii, v, and vi.8 All studies were approved by the Washington University
School of Medicine Animals Studies Committee and follow the guidelines of the National
Institutes of Health’s Guide for the Care and Use of Laboratory Animals.

2.2 Surgical Preparations

Prior to imaging, typical surgical preparations were implemented.9,17 Briefly, isoflurane anes-
thesia (3% induction, 1% maintenance, 0.5 L∕min) was used for sedation and an optically
transparent 14 × 18 mm plexiglass window was implanted with translucent dental cement
(C&B-Metabond, Parkell Inc., Edgewood, New York) following a midline incision and
clearing of skin and periosteal membranes. The window covered the majority of the dorsal
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cortical surface and provided an anchor for head fixation and allowed for chronic, repeatable
imaging.

2.3 Photothrombosis

Mice were secured in a stereotaxic frame under isoflurane anesthesia. 200 μL of Rose Bengal
(Sigma Aldrich) dissolved in saline (10 g∕L) was injected intraperitoneally. After 4 min,
a 532-nm diode-pumped solid-state laser (Shanghai Laser & Optics Century) was focused to
2.2 mm left and 0.5 mm anterior to bregma with a 0.5 mm spot size and at 23 mW for 10 min.18

Mice were imaged at baseline [i.e., prior to photothrombosis (Day 0)], and 72 h post (Day 3). The
dataset used in the following analyses consists of two five-minute imaging runs from each
mouse. The stroke data were processed and analyzed as described below. Calcium data were
filtered with a 0.4 to 4.0 Hz Butterworth bandpass filter and hemoglobin data with a 0.009
to 0.08 Hz Butterworth bandpass filter. These frequency bands were selected as they correspond
to delta (0.4 to 4.0 Hz) and infraslow (0.009 to 0.08 Hz) ranges. The canonical FC frequency
band (infraslow, 0.009 to 0.08 Hz) was used for hemoglobin-based analysis similar to the blood
oxygen level dependent (BOLD) analysis used in the fMRI community.

2.4 Fluorescence and Optical Intrinsic Signal (OIS) Imaging

Mice were head-fixed in a stereotaxic frame and body secured in a black felt pouch for imaging.
Sequentially firing LEDs (Mightex Systems, Pleasanton, California) passed through a series of
dichroic lenses (Semrock, Rochester, New York) into a liquid light guide (Mightex Systems,
Pleasanton, California) that terminated in a 75 mm f∕1.8 lens (Navitar, Rochester, New York)
to focus the light onto the dorsal cortical surface. LEDs consisted of 470 nm (GCaMP6f exci-
tation), 530, 590, and 625 nm light. An sCMOS camera (Zyla 5.5, Andor Technologies, Belfast,
Northern Ireland, United Kingdom) coupled with an 85 mm f∕1.4 camera lens (Rokinon, New
York, New York) was used to capture fluorescence/reflectance produced at 16.8 Hz per wave-
length of LED. A 515 nm longpass filter (Semrock, Rochester, New York) was used to discard
GCaMP6f excitation light. Cross polarization (Adorama, New York, New York) between the
illumination lens and collection lens discarded artifacts due to specular reflection. The field-
of-view (FOV) recorded covered the majority of the convexity of the cerebral cortex
(∼1.1 cm2), extending from the olfactory bulb to the superior colliculus. All imaging data were
binned in 156 × 156 pixel2 images at ∼100 μm2 per pixel.

2.5 Toolbox Capabilities and Workflow: Data and User Input

In order to initiate use of the toolbox, data has to be loaded into MATLAB (we recommend
version 2022a or newer). Data should be in the form of pixels by pixels by frames. Example
data used in the following analyses were acquired using the aforementioned mesoscopic calcium
imaging modality, however, usage can be expanded to incorporate any data configured into this
data stack (e.g., voltage-sensitive dye imaging, data from other animal models). However,
one caveat to be noted is the following data processing pipeline was optimized on mesoscopic
WOI mouse data. All inputs and outputs to specific scripts mentioned and highlighted in
Fig. 1 are specified in the header of each script. The explanation that follows will walkthrough
each processing step, which are all in separate subroutines. Subroutines will be referenced, and
scripts that should be edited to run by the user are highlighted in Fig. 1 and Table 1.

Within the “START” folder at https://github.com/brierl/Mouse_WOI/tree/main/START, the
folder “Proc” contains the first script that should be used to load data in [following the flowchart
in Fig. 1(a)]. The script load_data.m allows the user to load the image stack and normalize one
frame (variable “frame5”) that will be used in the next script make_mask_landmarks.m. Within
make_mask_landmarks.m, the built-in MATLAB function roipoly.m is used to prompt the user
to create a binary mask representing brain regions (i.e., 1) or nonbrain regions (i.e., 0) saved to
the variable “isbrain.” The user is to click along the perimeter of the brain displayed in the frame
and double click upon closing the loop to create the binary file [example in Fig. 2(a)]. This file
will be used later and multiplied through the image stack so only pixels corresponding to brain is
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analyzed within the FOV. Next, the frame is passed to the subroutine MakeSeedsMouseSpace.m
within make_mask_landmarks.m where the user is prompted to click on the anterior midline
suture landmark and then the lambda landmark. From these two coordinates, a prototype of
seed regions used for FC analysis [explained below and example in Fig. 2(b)] is displayed
on the dorsal cortical surface (corresponding to motor, somatosensory, visual cortices etc.).
A box will pop up prompting the user to specify if they are content with the seed prototype.
A “yes” is appropriate if the seeds appear symmetrical across midline and extend across the
entire dorsal cortical surface. A “no” will prompt the user to identify the aforementioned land-
marks again with the hope of creating a more symmetrical seed prototype. These landmarks are

Fig. 1 WOI mouse toolbox flowchart. (a) User input is needed after loading data, MATLAB will
prompt user to trace the dorsal cortical surface as well as select anatomical landmarks. (b) Optical
system dependent processing steps. These processing steps depend on the amount of ambient
light present, natural fluctuations, and LEDs used for spectroscopy. (c) Optical system indepen-
dent steps. (d) Optional steps such as affine transform if comparing multiple mice, temporal
filtering, or quality control outputs. (e) Seed-wise FC analysis steps. (f) Bilateral FC analysis steps.
(g) Stimulus activation analysis steps. (h) Cluster-based statistics steps used to find cluster size
threshold in number of pixels.

Table 1 Data processing functions to be run by user. Functions outlined at each processing step
in Figs. 1(a)–1(d).

Function Description

load_data.m Load image stack

make_mask_landmarks.m Uses roipoly.m, a built-in MATLAB function, to trace/create binary mask.
User then clicks anterior suture and lambda to create seeds

Proc1_sys_dep.m Data processing, image system dependent steps (uses Mightex and
prahl .txt files for spectroscopy, examples on GitHub)

Proc2.m Data processing, image system independent steps

Affine.m Perform affine transform to common atlas space

OIS_GCaMP_Filter.m Butterworth filtering

check_mvmt.m Outputs the global variance of the temporal derivatives
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later used to affine transform images to a common image space. Herein end the steps that rely on
prompted user input [outlined in Fig. 1(a)].

2.6 Toolbox Capabilities and Workflow: Data Processing

The data processing functionality of the toolbox represents our standard image processing
pipeline, which has incorporated methodologies across multiple WOI groups and is outlined
continuing in Fig. 1(b). The first processing script that should be run is proc1_sys_dep.m and
outlines the processing steps that are optical system dependent. First, a frame of ambient baseline
light levels collected off of the imaging system (Dark.tif, will need to be replaced on each im-
aging system although ours is available on GitHub) is subtracted from the time series data in the
subroutine subtract_dark_ois.m. Dark.tif was created by averaging dark frames collected over
1 min. Data is then spatially and temporally detrended using the built-in MATLAB detrend.m
function within the subroutine detrend_ois.m to account for global artifactual fluctuations in the
data by space and time. Examples of global fluctuations affecting the time-series light levels
include photobleaching, LED current drift, and nonuniformities introduced by skull anatomy.
Next, the processing stream diverges based on whether data is being processed into fluctuations
in hemoglobin or fluorescence data. First, for hemoglobin data, channels that will be solved
for fluctuations are sent to the subroutine procPixel.m where the logmean.m function takes the
pixel-wise log-ratio of each frame (raw intensity data, Ftrace, over mean intensity data),

EQ-TARGET;temp:intralink-;e001;116;132 log

�
Ftrace

meanðFtraceÞ
�
; (1)

and then the subroutine dotspect.m solves the modified Beer–Lambert law to yield fluctuations
in oxygenated and deoxygenated hemoglobin, as previously explained.7 For fluorescence data,

Fig. 2 Example processing and analysis step outputs. (a) A traced dorsal cortical surface.
(b) Seeds that are automatically plotted after selecting the anterior suture and lambda (marked
by X ). (c) Plots of pixels by time, the squared temporal derivative, or the RMS of the temporal
derivative to visualize fluctuations in GCaMP6 signal during the experiment. (d) Example
GCaMP6 seed-wise FC maps in one mouse, one run. (e) Example bilateral FC maps in one
mouse, one run. (f) An overlaid cortical parcellation to visualize cortical functional regions.
(g) A GCaMP6 activation trace using the same experimental paradigm as in Fig. 5(a) in one mouse
and one experimental run. Signal was averaged across pixels in the activation area and vertical
lines indicate the stimulus presence.
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the respective channel is mean normalized (mean_normalize.m) and then the result is corrected
for absorptions of excitation and emission light by hemoglobin fluctuations19 (hgb_correc-
tion.m). Following this correction, the logmean of the data is taken (logmean_fluor.m) and then
the fluorescence and hemoglobin data is concatenated into a single variable, “all_contrasts.”

The next data processing script is Proc2.m and outlines the steps that are optical system
independent [Fig. 1(c)]. The first subroutine, smoothimage.m, spatially smooths the data with
a 5 × 5 Gaussian filter (1.3 pixel standard deviation). The global signal, computed by taking an
average of all time traces within the FOV, gets regressed from the time series data to reduce
global sources of variance such as motion and pulse, thus enhancing network correlation speci-
ficity (subroutine gsr.m).

Figure 1(d) outlines the optional processing steps. Affine.m allows for cross-mouse averag-
ing by affine transforming the data to common Paxinos atlas space using the previously deter-
mined landmarks. The last processing script (OIS_GCaMP_Filter.m) allows for optional
temporal filtering. Here, calcium data were filtered with a 0.4 to 4.0 Hz Butterworth bandpass
filter and hemoglobin data with a 0.009 to 0.08 Hz Butterworth bandpass filter. These frequency
bands were selected as they correspond to delta (0.4 to 4.0 Hz) and infraslow (0.009 to 0.08 Hz)
ranges. The final processing script allows for an output of data quality (check_mvmt.m). This
script outputs a pixels by time snapshot of contrast fluctuation [an example of this script run on
GCaMP6 data in one run of one mouse in Fig. 2(c)]. The final panel is a calculation of the global
variance in the temporal derivative, a surrogate measure of artifact tone as determined in human
diffuse optical tomography.20

2.7 Toolbox Capabilities and Workflow: Analyses

Multiple types of analyses are supported by this toolbox and we walkthrough the two we use to
analyze the stroke model in Fig. 1(e) and Table 2 (seed-based FC) and Fig. 1(f) and Table 3
(bilateral FC) post data processing. To initiate seed-based FC, folder “FC” has calc_fc.m, which
takes in the processed data (e.g., “all_contrasts”), mask “isbrain,” and a seed set “seedcenter” to
extract time traces within each seed region (subroutine P2strace.m) and calculate Pearson r cor-
relation coefficients between each time trace and the remaining pixels in the FOV (subroutine
strace2R.m). The next script, visualize_fc.m plots each seed-based FC map [example output
in Fig. 2(d)].

For bilateral FC calculations, start with calc_bilateral.m within folder “BilatFC,” which
requires the same data and mask inputs as calc_fc.m (note: this calculation does not need a seed
set). The subroutine CalcRasterSeedsUsed.m outputs a matrix of left hand and right hand
side pixel pairs that a Pearson r correlation value will be calculated between. Subroutines
fcManySeed.m and CalcBilateral.m calculates the Pearson r value and organizes the r matrix

Table 2 Seed-wise FC analysis functions to be run by user. Table of
functions to calculate seed-wise FC maps as outlined in Fig. 1(e).

Function Description

calc_fc.m Calculates Pearson correlation
per seed set per run

visualize_fc.m Visualize seed-wise FC maps per run

Table 3 Bilateral FC analysis functions to be run by user. Table of func-
tions to calculate bilateral FC maps as outlined in Fig. 1(f).

Function Description

calc_bilateral.m Calculate bilateral FC maps per run

visualize_bilat.m Visualize bilateral FC maps per run
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into an image across the dorsal cortical surface. The next script, visualize_bilat.m, outputs a figure
as shown in Fig. 2(e) of the bilateral FC maps for each contrast analyzed. A parcellated dorsal
cortical surface is provided in Fig. 2(f) to orient users to the cortical regions within the FOV.

Additional analysis supported by the toolbox includes stim activation plotting and tracing
[outlined in Fig. 1(g) and Table 4] in folder “Stims.” The user should run calc_stims.m with data
(“all_contrasts”) and mask (“isbrain”) inputs. This script has commented variables to define the
length of stimulus blocks so that the data can be rearranged into pixels by pixels by stimulus
block length by number of blocks. Then, a mean frame (calculated by averaging together frames
when the stimulus is off) is subtracted from the time-series data. The script plots an average
frame from when the stimulus is on and thresholds the image at 80% max activation. The pixels
surviving this threshold are averaged spatially, and the trace across averaged stimulus blocks is
plotted [example trace for one mouse in Fig. 2(g)].

Outlined in Fig. 1(h) and Table 5 are the scripts used to perform the cluster size-based stat-
istical thresholding (in folder “Stats”) described below. The user should run cluster_threshold.m,
which requires data (“all_contrasts”), a mask (“isbrain”), and an alpha level [the overall family-
wise error (FWE) rate e.g., p ¼ 0.05] as inputs. The script calls subroutine FWHM_ParDer.m,
which estimates the FWHM based on a covariance matrix of the spatial partial derivatives of
the data. Then, the threshold for cluster size significance is solved for and output.

To enhance visualization, all of these maps can be plotted onto our cortical parcellation
map (as in Fig. S2 in the Supplementary Material) as determined by White et al.,7 using the
Parcellations.mat file (variable “Parcels”) located in the “START” folder.

2.8 Electrical Hindpaw Stimulus Imaging

A stimulus driven protocol was used to further show the utility of the statistical correction
method described. Two GCaMP6 mice were surgical prepared as previously described. Mice
were anesthetized and microvascular clips were applied to the left hindpaw. An isolated pulse
stimulator was used to deliver 2 Hz, 300 μs, 0.5 mA electrical stimuli. Each imaging block
consisted of 5 s rest, 5 s stimuli, and 10 s rest. Each mouse underwent 14 imaging blocks.
GCaMP6 data were processed as described above and spatially downsampled to 78 pixels2 and
temporally downsampled to a framerate of 8.4 Hz. No temporal filtering was used and the pixel-
wise average time trace was subtracted. Average activation maps were calculated by averaging
across imaging blocks then across mice. A one-sample t-test was used to compare activation
areas to the null hypothesis of no activation areas.

2.9 Cluster-Based Thresholding

A challenge with analyzing the statistical significance in functional imaging is managing the
multiple comparisons problem. Here, we used a cluster size-based method that leverages the

Table 4 Stimulus activation analysis function to be run by user. Function
to calculate stimulus activation maps and traces as outlined in Fig. 1(g).

Function Description

calc_stims.m Calculate average activation maps
and activation traces. Visualize both

Table 5 Cluster statistical analysis function to be run by user. Function to
calculate cluster size for statistical significance as outlined in Fig. 1(h).

Function Description

cluster_threshold.m Solve for cluster size-based threshold
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spatial connection between pixels and credits large clusters as having more statistical signifi-
cance than small clusters with the same peak t-value. More specifically, we used a cluster size-
based thresholding method (determined by the cluster-size limit, kα) to analyze two-dimensional
FC maps and to ensure the FWE rate did not exceed 5%. A random field theory (RFT) approach
was adapted from the fMRI and DOT literature15,16 to fit our two-dimensional data. Using RFT,
we are able to approximate the expected (E½ �) number of clusters (m) in an image at a given
z-score threshold [Zt, Fig. 3(a)]:

EQ-TARGET;temp:intralink-;e002;116;282E½m� ¼ R � 4 lnð2Þ � 2π−3∕2 � Zte−
1
2
�Z2

t ; (2)

which holds true for increasing values of Zt: Here, we use Zt ¼ 3.09, which corresponds to a
false positive rate of 0.001 at the pixel level. R represents the number of resolution elements
provided by the optical system:

EQ-TARGET;temp:intralink-;e003;116;213R ¼ x2∕FWHM2; (3)

where x is the number of pixels in the image in one dimension and FWHM is the full-width half
maximum of the point spread function estimated from the covariance of the spatial partial deriv-
atives of a fully processed image.16,21 Here, we use x ¼ 78 pixels (156 pixel2 images that have
been downsampled by 2, 11 mm total) and calculate an FWHM of about 7 pixels (0.99 mm) for
the imaging system data. The FWHM is solved for using one frame of an image stack within the
subroutine FWHM_ParDer.m as detailed by Hassanpour et al. and Xiong et al.16,21 Briefly, a
covariance matrix is calculated on the spatial partial derivatives of one frame and the relationship
between this covariance matrix (Λ) and the FWHM is defined as

Fig. 3 Random field theory identifies cluster size threshold for pixel-wise t -maps on GCaMP6
bilateral FC data. (a) The relationship between the pixel-wise false positive rate (determined
by Z t , vertical dashed black line is Z t ¼ 3.09, which corresponds to p ¼ 0.001) and the expected
number of clusters to survive thresholding due to chance (E ½m�). (b) The relationship between
the pixel-wise false positive rate (determined by Z t , horizontal dashed black line is Z t ¼ 3.09,
which corresponds to p ¼ 0.001), the family-wise error rate (here, 0.05) and cluster size needed
for significance. (c) Top row: average (N ¼ 4) bilateral FC maps pre (left) and 3 days post (right)
photothrombotic stroke to left somatosensory forepaw cortex (marked by hollow black circle).
Middle row: pixel-wise paired t -test (left) and thresholded image for pixels with p < 0.05 (right).
Bottom row: thresholded image with FWE = 0.05 using the cluster size-based method (left) and
image with Bonferroni correction for multiple comparisons (right).
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EQ-TARGET;temp:intralink-;e004;116;735jΛj ¼
�
FWHM2

4 lnð2Þ
�−2

: (4)

We are able to then approximate the expected number of pixels (N) above Zt as

EQ-TARGET;temp:intralink-;e005;116;686E½N� ¼ E½m� � E½n�; (5)

where n is the pixel count within a cluster and

EQ-TARGET;temp:intralink-;e006;116;643E½n� ¼ 2πFWHM2

Z2
t 4 lnð2Þ : (6)

The probability that n will exceed any threshold, x, can be modeled by the exponential
function

EQ-TARGET;temp:intralink-;e007;116;573Pðn ≥ xÞ ¼ e−βx; (7)

where β can be expressed as

EQ-TARGET;temp:intralink-;e008;116;529β ¼ Γð2ÞE½m�
E½N� ; (8)

where Γ is the gamma function. Substituting Eq. (6) into Eq. (5) and then the newly formed
Eq. (5) into Eq. (8) rearranges the above to

EQ-TARGET;temp:intralink-;e009;116;460β ¼ Γð2ÞZ2
t 4 lnð2Þ

2πFWHM2
: (9)

Providing an equation (with all previously solved for values) that varies with the inverse of
the squared FWHM. We only want clusters to survive thresholding with a family-wise error rate
of 0.05 (α), therefore, we want to find the pixel count threshold, kα, that would result in at least
one cluster surviving threshold when there is no true significant difference, 5% of the time.
Essentially, we are asking for a kα where the following is true:

EQ-TARGET;temp:intralink-;e010;116;356Pðn ≥ kαÞ ¼ α: (10)

Assuming no clusters are a true positive. Which, mathematically speaking, is the same as
solving for 1 minus the probability that no clusters have a pixel count above threshold kα
[Fig. 3(b)]:

EQ-TARGET;temp:intralink-;e011;116;288Pðn ≥ kαÞ ¼
X∞
i¼1

Pðm ¼ iÞ½1 − Pðn < kαÞi�; (11)

EQ-TARGET;temp:intralink-;e012;116;228 ¼ 1 − e−E½m��Pðn≥kαÞ; (12)

which yields:

EQ-TARGET;temp:intralink-;e013;116;205kα ¼
1

β
ln

�
−E½m�

lnð1 − αÞ
�
: (13)

After substituting Eq. (7) into Eq. (12) and solving for kα.
Pixel-wise t-tests were performed to compare Day 0 and Day 3 stroke FC maps, and to

compare stimulus activated maps to the null hypothesis of no activation. These t-test maps were
then thresholded, leaving pixels with a t-value corresponding to p < 0.05. If the number of pixels
in the remaining clusters exceeded kα, these clusters were considered to have a statistically
significant finding within them by the cluster size-based technique.
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2.10 Data and Code Availability

To promote validation and comparative analyses by external groups, data and specific code will
be made available through requests to the corresponding author. The toolbox presented here, (for
WOI processing and analysis) is available online (https://github.com/brierl/Mouse_WOI/tree/
main/START/) and was used for all present analysis. Stroke and stim data is available on
Mendeley Data (stroke22 and stim23) and detailed in Table 6.

3 Results

3.1 Toolbox Overview

We seek to distribute a comprehensive, easy-to-use, open-source toolbox for mouse WOI
data processing and analysis. Within this toolbox, we have translated multiple techniques from
the human fMRI literature to the WOI mouse world. The toolbox is largely split up into two
pipelines (Fig. 1, Tables 1–5), data processing and postprocessing analysis. A walkthrough is
provided in Sec. 2, but briefly, prompted user input is needed while running scripts to load data
and mark brain regions and anatomical landmarks [Figs. 1(a), 2(a), and 2(b)]. The remaining
processing steps outlined in Figs. 1(b)–1(d) are split up into optical system dependent (for
spectroscopy and fluorescence data processing) and independent steps, as well as optional
steps [Fig. 2(c)]. After processing the data, multiple analysis pipelines are supported.
Figures 1(e)–1(h) outlines the steps for the analyses shown in later figures, namely FC calcu-
lations [Figs. 2(d) and 2(e)], stimulus activation plotting [Figs. 2(f) and 2(g)], and statistical
testing.

3.2 Cluster Size-Based Thresholding Applied to Stroke Data

The cluster size-based statistical thresholding method15,16 is detailed in the Methods and was
adapted from the fMRI and DOT literature. The method is used here to select clusters of
size kα (expressed in number of pixels) with p < 0.05 by the pixel-wise paired t-test method
that satisfies the pixel-wise false positive rate (set by Zt) and overall family-wise error rate
[Figs. 3(a) and 3(b)]. Using this cluster size cutoff, we were able to compare bilateral FC maps
at baseline (N ¼ 4, Day 0) and 72 h post (N ¼ 4, Day 3) photothrombotic stroke [Fig. 3(c)].
Photothrombosis was induced in left somatosensory cortex, which resulted in loss of homotopic
FC at Day 3. A pixel-wise t-test was performed and thresholded to only display regions with
p < 0.05 (note, this map is not corrected for multiple comparisons). Using the cluster-size based

Table 6 Sample data available on Mendeley Data.22,23 Rows 1–4: table of the sample unproc-
essed data available online corresponding to two, 5-min baseline and two, 5-min post stroke runs.
Rows 5 and 6: sample processed 5-min stim data runs in 14 blocks of 20 s each broken down into
5 s of rest, 5 s of 2 Hz stims, and 10 s of rest.

Function Description

Pixels × pixels × frames, resting state, 5 min, Hr0 201118-1253-1-fc1.mat

Pixels × pixels × frames, resting state, 5 min, Hr0 201118-1254-5-fc1.mat

Pixels × pixels × frames, resting state, 5 min, Hr72 201122-1253-1-fc1.mat

Pixels × pixels × frames, resting state, 5 min, Hr72 201122-1254-5-fc1.mat

Pixels × pixels × frames × block, stim, 5 min 112233-TestMs3-stim1-
Affine_GSR_BroadField_Stim.mat

Pixels × pixels × frames × block, stim, 5 min 112233-TestMs4-stim1-
Affine_GSR_BroadField_Stim.mat
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threshold (FWE = 0.05), we were able to localize a somatosensory anchored deficit. This deficit
was overlaid and contained completely within the parcellated somatosensory cortex (Fig. S2 in
the Supplementary Material). Due to the symmetrical nature of the bilateral FC calculation,
loss of homotopic FC is visualized by a symmetrical deficit [green area in Fig. 3(c) upper
right panel]. Using the Bonferroni correction for multiple comparisons, no regions survived
this stringent cutoff, resulting in no significant differences between day 0 and day 3 with this
method.

Further exploring cross-network alterations in the context of this stroke model, we calculated
seed-wise FC maps at Day 0 and Day 3 (Fig. 4). Using the same statistical framework, we com-
pared the results at Day 0 and Day 3 and illustrated significant network alterations bilaterally in
the seed-wise somatosensory (Ss.) map and an unaffected visual cortex outside of the area of
photothrombosis.

Repeating the same analysis and using oxygenated hemoglobin as a contrast, we see a similar
deficit within somatosensory cortex in the seed-wise FC maps (Fig. S1 in the Supplementary
Material). However, with hemoglobin as a contrast, we lose statistical significance in this experi-
ment as the somatosensory-based deficit does not survive cluster-based statistical thresholding.
Additionally, regions of cortex survive our cluster-based statistical analysis when using a visual
seed contrary to when this analysis was performed using calcium.

3.3 Cluster Size-based Thresholding Applied to Stimulus Data

We imaged two GCaMP6 mice that underwent anesthetized electrical hindpaw stimuli
experiments. The protocol consisted of multiple blocks of 5 s of rest, 5 s of 2 Hz stimulus, and
10 s of rest [Fig. 5(a)]. The average activation while the stimulus was delivered was mapped
[Fig. 5(b)]. A one-sample t-test was thresholded for p < 0.05 leaving multiple areas of cortex.
A Bonferroni correction for multiple comparisons removed all activation areas while the cluster-
based correction method localized the somatosensory-based activation while removing spurious
artifacts.

Fig. 4 Cluster size thresholding yields Ss based deficit and unaffected visual cortex using a seed-
wise FC methodology with calcium data. Average (N ¼ 4) seed-wise FC maps using seeds in
somatosensory (Ss.) and visual (Vis.) cortices at (first column) baseline and (second column)
3 days post photothrombotic stroke to left somatosensory forepaw cortex (marked by hollow black
circle). Third column: pixel-wise paired t -test between Day 0 and Day 3. Fourth column: thresh-
olded images for pixels with p < 0.05. Fifth column: thresholded images showing regions of sta-
tistically significant change using a clustered-based methodology with FWE = 0.05. Sixth column:
no pixels survived the Bonferroni correction for multiple comparisons.
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4 Discussion

WOI, especially of mice expressing genetically encoded calcium indicators (GECIs), provides
cell-specific, improved temporal resolution recordings of calcium transients across the entire
mouse cortex.8–10 Functional neuroimaging analysis pipelines have been thoroughly developed
in the functional magnetic resonance imaging (fMRI) literature,24,25 however, despite having
many similarities, these analytical techniques have not been translated into a comprehensive,
user friendly mouse WOI toolbox. Here, we provide a toolbox that processes data according
to previous reports.8,19 We also implement some statistical approaches from the fMRI literature
to handle the massive multiple comparisons problem present in all functional neuroimaging data.

The spatial resolution afforded by techniques such as fMRI or WOI allow neuroscience
inquiries with network-level spatial specificity.2,9 However, treating each voxel or pixel as
an independent measure will result in an almost always insurmountable correction for multiple
comparisons (e.g., using the Bonferroni correction). Therefore, there has been significant work
done in the fMRI literature to develop more appropriate algorithms to address this.15 The cluster
extent-based thresholding statistical approach operates on the hypothesis that neighboring pixels
are likely not independent samples (i.e., a Bonferroni correction for multiple comparisons would
be too stringent). Therefore, large-grouped differences via independent pixel-wise statistical tests
are more likely to represent a significant change somewhere within that cluster. Here, this
method is set up to have a family-wise error (FWE) rate of 5%, meaning in the collection of
thresholded pixel-wise t-tests, there is a 5% chance of having at least one false positive result.
An advantage of this technique is that it allows for spatial specificity of activation or change in
connectivity by considering all pixels or voxels in the FOV. However, this method only works as
well as the initial analysis does in specifically isolating an activation or change since the rightful
conclusion of a cluster surviving thresholding is that a change or activation occurred within that
cluster. Here, we translate this method used in three-dimensional fMRI to two-dimensional WOI
data and demonstrate the ability to localize a somatosensory-based deficit 3 days after a photo-
thrombotic event to left somatosensory cortex [Fig. 3(c)]. Using a seed-wise approach to
calculating FC, we were able to illustrate this same somatosensory anchored deficit (note the
bilateral deficit when using the Ss. Seed, Fig. 4). Notably, both hemispheres are affected using
this seed-wise approach, with a larger surface area of deficit on the left (where the area of photo-
thrombosis occurred) as opposed to the right. Further, we illustrate the spatial specificity of the
analysis when using calcium dynamics through an unaffected visual cortex outside of the area of
photothrombosis. This was in contrast to the hemoglobin-based dynamics run through the same
analysis where we did unexpectedly find deficits using a visual seed due to a somatosensory
stroke (Fig. S1 in the Supplementary Material, visual seed). It is evident when examining the
Day 0 and Day 3 FCmaps that there is an extra level of spatial specificity afforded by the calcium
mapping, supporting our claim that the cluster-based statistical thresholding methodology is
dependent on the spatial specificity of the initial analysis. Additionally, there was more

Fig. 5 Cluster size thresholding plots the GCaMP6 cortical activation in response to electrical
sensory stimulus. (a) The experimental paradigm consisting of 5 s of rest, 5 s of stimulus on,
10 s of rest, that is repeated throughout the imaging duration. (b) Temporally averaged frame
across durations of stimulus on (left) followed by a one-sample t -test thresholded for areas of
p < 0.05 and respective cluster-based and Bonferroni corrections.
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variability in the hemoglobin-based measurements, as displayed by the smaller t-values and
subsequent loss of statistical significance despite the large effect size in the somatosensory
FC map.

Optical imaging is often burdened by spurious artifact at the edges of the FOV. There is a
precedence for discarding these regions; however, this statistical correction method supports this
in a data-driven and mathematical manner. Our stimulus experiment purposefully used a small
sample size (N ¼ 2) to show off the utility of the statistical package. It was apparent though, that
due to the small sample size, there were multiple areas surviving initial t-testing that were not
due to the experimental protocol (Fig. 5). Some of these areas were at the edge of the FOV but
some were not. Our methodology here provides an unbiased way to handle the imaging data to
correctly map regions of activation (stimulus) or deficits (stroke).

5 Conclusions

This toolbox fills a much-needed gap between the fMRI and WOI data processing communities.
Shown throughout are examples of a commonly used statistical measure that was developed
within fMRI being applied to FC and stimulus activations calculated with the WOI data.
However, the toolbox is also set up to compute node degree,26 spectral content,9 multivariate
FC,27 and a neurovascular coupling (NVC) approximation,8 which can all be plotted topographi-
cally and corrected via cluster-based thresholding (these packages also available at https://github
.com/brierl/Mouse_WOI). The wide distribution and use of this toolbox will greatly aid groups
that are hoping to start imaging mouse models of health and disease to better understand how
brain dynamics might change in humans.
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