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ABSTRACT  

Based on well-established X-ray physics in computed tomography (CT) imaging, the spectral responses of different 

materials contained in lesions are different, which brings richer contrast information at various energy bins. Hence, 

obtaining the material decomposition of different tissue types and exploring its spectral information for lesion 

diagnosis becomes extremely valuable. The lungs are housed within the torso and consist of three natural materials, 

i.e., soft tissue, bone, and lung tissue. To benefit the lung nodule differentiation, this study innovatively proposed to 

use lung tissue as one basis material along with soft tissue and bone. This set of basis materials will yield a more 

accurate composition analysis of lung nodules and benefit the following differentiation. Moreover, a corresponding 

machine learning (ML)-based computer-aided diagnosis framework for lung nodule classification is also proposed 

and used for evaluation. Experimental results show the advantages of the virtual monoenergetic images (VMIs) 

generated with lung tissue material over the VMIs without lung tissue and conventional CT images in differentiating 

the malignancy from benign lung nodules. The gain of 9.63% in area under the receiver operating characteristic curve 

(AUC) scores indicated that the energy-enhanced tissue features from lung tissue have a great potential to improve 

lung nodule diagnosis performance.  

Keywords: Multi-energy CT reconstruction, Computer-aided diagnosis, Machine learning, Malignant and benign 

differentiation 

 

1. INTRODUCTION  

N the conventional single energy CT, different tissue types can be represented by the linear attenuation 

coefficients (LACs). LACs are not unique for any given material and depend on the photon energies interacting 

with the material and the mass density of the material. Therefore, two different tissues may share similar intensity 

values, making it challenging to perform material decomposition based on the segmentation with the intensity values 

alone. Compared to the conventional single energy CT, additional measurements with a second or more energy (called 

multi-energy) allow the identification of two or three materials. Multi-energy CT also enables multiple materials 

(composition) analysis within the same region of interest, e.g., lesion. Based on well-established X-ray physics in CT 

imaging, the spectral responses of different materials contained in lesions are different, which brings richer contrast 

information at different energy bins. Hence, obtaining the material decomposition of different tissue types and 

exploring its spectral information for lesion diagnosis becomes extremely valuable.  

The lungs as the primary organs of the respiratory system are essential for humans to breathe. Lung cancer is the 

leading cause of cancer death in the US. According to the report from World Health Organization, there are around 

2.20 million deaths in 2020. CT has been recommended as an advanced non-invasive tool for cancer screening in the 

early stage, which provides fully three-dimensional (3D) information for volumetric-based lesion detection. Torso CT 

images consist of three natural materials, which are lung, bone, and soft tissue. To benefit the lung nodule 

differentiation, this study innovatively proposed to use lung tissue as one basis material along with soft tissue and 
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bone. This set of three basis materials will yield a more accurate composition analysis of lung nodule and benefit the 

following differentiation.  

In dual-energy CT (DECT), the scanned object can be decomposed into two basis materials (e.g., bone and soft 

tissue) with two datasets, one at high and the other at low energy [1]. To analyze more than two materials, one 

straightforward strategy is to obtain an additional measurement at one more energy, which we called triple energy CT 

(TECT). And it could provide three decomposed materials reconstructed from the three datasets. In the previous 

application, when using triple spectrums to decompose three materials, two materials are natural and the third is 

usually injected contrast agent (e.g., bone, soft tissue, and iodine) [2]. In this study, we use triple spectrums to 

decompose all-natural tissues: lung tissue, soft tissue, and bone. In addition, we also explore using two spectrums to 

decompose three materials, which can further lower the radiation dose. This paper will describe the material 

decomposition with the novel set of basis materials in detail. Moreover, a machine learning (ML)-based computer-

aided diagnosis (CADx) framework for lung nodule classification is also proposed, which is based on the data-driven 

deep learning-based convolutional neural network (DL-CNN) method. 

The remainder of this paper is organized as follows.  Section II will describe the material decomposition method 

and the proposed computer-aided diagnosis framework. Section III presents the experiment design and results.  

Discussion and conclusions are drawn in Sections IV and V. 

2. METHODS 

2.1 Material Decomposition 

Considering the material composition, a linear attenuation coefficient (LAC) can be represented by 𝑅 types of basis 

materials, e.g. soft tissue, bone, and so on.  The LAC function 𝜇𝑗(𝜀) at the 𝑗𝑡ℎ pixel of the image is decomposed as[3]: 

𝜇𝑗(𝜀) = ∑ 𝑚𝑟(𝜀)𝜌𝑟𝑗
𝑅
𝑟=1 ,                        (1) 

where 𝜌𝑟𝑗  denotes the density of material 𝑟  at the 𝑗𝑡ℎ  pixel, 𝑚𝑟(𝜀) represents the mass attenuation coefficient of 

material 𝑟 at energy 𝜀. 

By the use of DECT, two basis materials of bone and soft tissue are usually considered as the basis materials in the 

material composition. From the decomposed basis materials of bone and soft tissue, a series of virtual monoenergetic 

images (VMIs) can be generated. As lungs become a major clinical concern, where the lung tissue has a distinct feature 

from the soft tissue, it is desirable to consider the lung tissue as a basis material in addition to the bone and soft tissue. 

This is the major motivation of this study. The material decomposition can be performed directly in the sinogram data 

domain or the image domain after the images are reconstructed from the sinogram data, where the image 

reconstruction is usually performed by a linear operator, such as FBP. 

1) Image-domain material decomposition 

Regarding the material decomposition in the image domain, Eq. (1) can be rewritten as, 

𝜇𝑗(𝜀) = ∑ 𝑚𝑟(𝜀)𝜌𝑟𝑗
𝑅
𝑟=1 = ∑ 𝑚𝑟(𝜀)𝜌𝑟𝑓𝑟𝑗

𝑅
𝑟=1 = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗

𝑅
𝑟=1 ,             (2) 

where 𝜌𝑟 is the density of the material 𝑟 and 𝜇𝑟(𝜀) denotes linear attenuation coefficient of material 𝑟 at energy 𝜀. 

Notation 𝑓𝑟𝑗 is a unitless tissue fraction that quantifies the contribution of material 𝑟 to attenuation in pixel 𝑗, which 

needs to be solved by the image domain decomposition methods. Theoretically, more unknowns need more equations 

to find the solution.  For a conventional single energy spectral CT image, we only have one FBP CT image.  For 

DECT, we have two FBP images from each of the two energy spectral data, respectively. From the two FBP images, 

we can obtain two basis material images.  For TECT, e.g. 60kVp, 100kVp, and 140 kVp, we have three FBP images 

correspondingly. 

By setting 𝑅 = 3 for Eq. (2), we have three linear equations for three basis materials with the triple energy CT FBP 

images 𝜇𝐸𝑞  (Tube voltage = 𝐸𝑞 , 𝑞 = 1,2,3) as follows [4], 

𝜇𝑗
𝐸1 = 𝜇1(𝐸1

𝑒𝑓𝑓
)𝑓1𝑗 + 𝜇2(𝐸1

𝑒𝑓𝑓
)𝑓2𝑗 + 𝜇3(𝐸1

𝑒𝑓𝑓
)𝑓3𝑗,     (3a) 

𝜇𝑗
𝐸2 = 𝜇1(𝐸2

𝑒𝑓𝑓
)𝑓1𝑗 + 𝜇2(𝐸2

𝑒𝑓𝑓
)𝑓2𝑗 + 𝜇3(𝐸2

𝑒𝑓𝑓
)𝑓3𝑗,     (3b) 

𝜇𝑗
𝐸3 = 𝜇1(𝐸3

𝑒𝑓𝑓
)𝑓1𝑗 + 𝜇2(𝐸3

𝑒𝑓𝑓
)𝑓2𝑗 + 𝜇3(𝐸3

𝑒𝑓𝑓
)𝑓3𝑗,     (3c) 

where 𝐸𝑞
𝑒𝑓𝑓

 denotes the effective energy of the corresponding X-ray spectrum at each selected tube voltage 𝐸𝑞 . 

𝜇1(𝐸𝑞
𝑒𝑓𝑓

), 𝜇2(𝐸𝑞
𝑒𝑓𝑓

), and 𝜇3(𝐸𝑞
𝑒𝑓𝑓

) describes the linear attenuation coefficient for basis material soft tissue, bone, and 

lung tissue at each effective energy, respectively.  
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Hence, the fractions 𝑓 of each material can be solved by minimizing the mean squared difference between the 

calculated attenuation coefficients with (3a)-(3c) and the reconstructed attenuation coefficients at each energy as 

follows, 

∅(𝑓) = ∑ ∑ (𝜇
𝑗

𝐸𝑞 − ∑ 𝜇𝑟(𝐸𝑞
𝑒𝑓𝑓

)𝑓𝑟𝑗
3
𝑟=1 )2𝐽

𝑗=1
3
𝑞=1 ,          (4) 

Similar to  [4], a grid search method can be utilized to optimize the objective function (4) to obtain the decomposed 

three materials. 

3.2 Virtual Monoenergetic CT images Generation 

From the three basis material images obtained by the image-domain or pre-log data domain, a series of VMIs at 

selected 𝑛 energies are generated with the corresponding tissue mass attenuation coefficients as follows. For example, 

we can choose 𝑛 = 10 with the energy values of 5, 8, 10, 12, 15, 20, 25, 30, 35, 40 and 45 keV, where the HU values 

in this energy range of 5-45 kVp have the maximum differences among the tissues to generate the tissue contrast 

features for CADx.  Hence, the virtual monoenergetic CT images or VMIs in the range can be expressed by, 

𝜇𝑗
𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝜀) = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗𝑟 ,                               (5) 

where 𝜀 = [5,8,10,15,20,25,30,35,40,45], 𝜇𝑟(𝜀) represents the linear attenuation coefficient of 𝑟 tissue type. 

3.3 Machine Learning (ML)-based CADx 

1) Deep learning (DL)-based CNN model: 

For the DL-based model, a 3D CNN architecture is designed, which has a multi-channel input with each energy 

image, as shown in Fig. 1. We first use four convolutional layers to extract the features, which are then pooled together 

with a global average pooling (GAP3D) layer such that the final features have a global receptive field.  Then, we use 

a fully connected (FC) layer-based classifier to distinguish the malignant and benign lesions.  Specifically, each 

convolutional layer consists of three operators: 3D convolution (Conv3D), 3D average pooling (Avgpooling3D), and 

rectified linear unit (ReLU).  We adopt the binary cross-entropy loss to train the model. The details of the CNN model 

are listed in Table I. 

Based on the above model, the final classification result will show the lung nodule diagnosis performance with the 

explored lung tissue material spectral information in VMIs. 

3. EXPERIMENTS AND RESULTS 

3.1 Datasets 

114 patients were scheduled for CT-guided lung nodule needle biopsy with X-ray exposure of clinical dose at 120 

kVp, 100 mAs in Stony Brook University Hospital, USA.  With the pathological report, a total of 114 lung nodules 

with 50 benign and 64 malignant were confirmed. Each CT scan covers a portion of the patient's entire chest volume, 

resulting in 100–200 image slices of 512 × 512 array size, and each image voxel is nearly cubic with an edge size of 

1 mm. 

 
Fig. 1:  The 3D CNN architecture of CADx for lung nodule diagnosis. 
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3.2 Multi-energy CT Scan Simulation 

In this study, we simulated the DECT and TECT scans with the above dataset. First, each slice image in the datasets 

was segmented as basis materials (soft tissue/bone for DECT, soft tissue/bone/lung tissue for TECT) with a simple 

threshold method and transferred the linear attenuation coefficient to density by dividing the corresponding material 

linear attenuation coefficient at 75 keV, which is the equivalent energy of 120 kVp X-ray spectrum. Hence, the material 

fractions images 𝑓𝑟 were obtained. Next, a poly-energetic forward model was used to simulate the DECT scan at 

80/140 kVp and TECT scan at 60/100/140 kVp by (6): 

𝑁̄𝑤𝑖 = ∑ 𝑆𝑤𝜀 (𝜀) 𝑒𝑥𝑝(− ∑ 𝐴𝑖𝑗𝑗 ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗
𝑅
𝑟=1 ). (6) 

An equidistant fan-beam geometry was assumed for a DECT scanner.  The distance from the X-ray source to the 

isocenter is 570 mm and the distance from the source to the detector (SDD) is 1040 mm. 1160 projections from a full 

angle were acquired with 672 detector elements with a width of 1.4 mm per element.  The X-ray spectrum at 60-, 80-, 

100- and 140-kVp were generated by the SpekCalc software with 3mm Al filtration. Then, the multi-energy CT scan 

simulation was done. In this paper, all the reconstructed basis material fraction image slices have an array size of 512 

× 512 with each pixel in the image slices covering an area of 1 mm × 1 mm.  The value of 𝛽 in the cost function (14) 

was empirically set to be 0.5 for the pre-log reconstruction. 

3.3 CNN Training Implementation 

For the input to the CNN-based implementation, we first converted each n-energy data with the resolution of 

64×64×64 voxels.  And these converted energy volumetric images were fed into the multi-channel 3D CNN as shown 

in Fig. 1 for training.  And the target is the results from the pathological reports of the malignant and benign lesions.  

The k-fold (k=5) cross-validation was implemented to test the robustness and avoid data bias. The procedure is as 

follows.  We firstly shuffled the dataset randomly and split it into 5 folds.  For each fold, we randomly divided the 

dataset into training and testing datasets.  And then we trained a model on the training dataset and evaluated it on the 

testing dataset. Finally, we retained the evaluation score for each fold and the average score was calculated.  In this 

study, the CNN model was trained for 100 epochs with a learning rate of 0.001 and batch size of 8 using Adam 

optimizer [5]. 

3.4 Lung tissue material decomposition  

Fig.2 shows the lung tissue material decomposition images from the TECT in the image domain. The result indicates 

that lung tissue can be reconstructed as one basis material with multi-energy CT data.  

3.5 Classification Performance 

With the three decomposed material fraction images from the above, the contrast-enhanced 10-energy VMIs data 

are generated by (18) and incorporated into the CADx part of our proposed ML-based methods. Meanwhile, to further 

verify the significance of lung tissue as the basis material, the traditional decomposed materials (soft tissue/bone) from 

DECT are also adopted to generate the VMIs for ML-based CADx. The conventional single CT data is also applied 

to CADx for comparison. For simplicity, we define the material decomposition methods in the image domain of  

DECT as DE-FBP, the corresponding methods of TECT as TE-FBP. To illustrate the effectiveness and the generality 

of our ML-based CADx, the AUC of each dataset was calculated. 

  
Fig. 2:  Axis slice of CT images in one dataset: (a) 60 kVp, (b) 100 kVp, (c) 140kVp. Results of TECT image domain 

decomposition: (d) soft tissue, (e) bone, (f) lung tissue. CT images display window: [0,0.5] cm-1, Tissue fraction images display 

window: [0,1.2].  
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For the DL-based CNN model, the conventional CT and the enhanced 10-energy VMI data w/ and w/o lung tissue 

basis material generated by different multi-energy data were incorporated into our 3D-CNN network, respectively. 

We calculated the mean values of AUC scores, which are shown in Table II.  We have the following observations. 

First, the multi-energy CT data achieve higher mean AUC values than the conventional 120 kVp data, which verifies 

the effectiveness of the contrast enhancement brought from the VMIs. Second, by considering the lung tissue as a 

basis material, the results show that the mean AUC values improved 3.64% for lung nodule characterization in 

comparison with the image-domain method by multi-energy CT. The main reason why the VMIs with lung tissue 

perform well is that the lung tissue has a distinct feature from the soft tissue and brings richer information for DL-

based diagnosis. 

4. DISCUSSION 

In this study, we proposed to use lung tissue as one basis material along with soft tissue and bone with the multi-

energy CT material decomposition for lung nodule characterization. The proposed CADx framework with lung tissue 

basis material fully utilizes the contrast enhancement at each energy bin and improves the diagnosis performance. 

However, there are opportunities for further refinements. First, how the decomposed image quality affects the CADx 

performance would be a very interesting future research. Second, for the VMIs generation, we selected 10 energies as 

an example. Ideally, when the basis material fraction images are well reconstructed, an arbitrary number of VMIs 

could be generated.  Hence, it remains an interesting topic to analyze the effect of the selected energy number on the 

CADx performance and optimize the range and number of energies in the range. Third, the feature quality of enhanced 

energy images varies among each other and not all of them are guaranteed to contain meaningful features to improve 

the CADx performance [6]. Exploring the meaningful features from the VMIs and developing an adaptive learning 

model should also be further investigated as future work. Finally, clinical evaluations with more human lung data sets 

are needed to test the robustness of the proposed method. 

5. CONCLUSIONS 

In conclusion, this study proposed an end-to-end computer-aided diagnosis framework for lung nodule 

characterization by multi-energy CT, which fully utilizes contrast enhancement on lung tissue as a basis material in 

reconstruction. Experimental results demonstrated that the lung tissue is able to be decomposed by multi-energy CT 

data with either the image-domain. The results also indicated the advantages of the VMIs generated with lung tissue 

material over the VMIs without lung tissue and conventional CT images in ML-based lung nodule classification. 
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TABLE II:  MEAN AUC VALUES FOR DL-BASED CNN DIAGNOSIS MODEL  

Data METHOD Lung tissue  

as basis 

material 

AUC 

Conventional CT (120kVp) FBP - 59.54 
DECT images DE-FBP  65.53 

TECT images TE-FBP ✓ 69.17 
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