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ABSTRACT  

Based on the X-ray physics in computed tomography (CT) imaging, the linear attenuation coefficient (LAC) of each 

human tissue is described as a function of the X-ray photon energy. Different tissue types (i.e. muscle, fat, bone, and 

lung tissue) have their energy responses and bring more tissue contrast distribution information along the energy axis, 

which we call tissue-energy response (TER). In this study, we propose to use TER to generate virtual monoenergetic 

images (VMIs) from conventional CT for computer-aided diagnosis (CADx) of lesions. Specifically, for a 

conventional CT image, each tissue fraction can be identified by the TER curve at the effective energy of the setting 

tube voltage. Based on this, a series of VMIs can be generated by the tissue fractions multiplying the corresponding 

TER. Moreover, a machine learning (ML) model is developed to exploit the energy-enhanced tissue material features 

for differentiating malignant from benign lesions, which is based on the data-driven deep learning (DL)-CNN method. 

Experimental results demonstrated that the DL-CADx models with the proposed method can achieve better 

classification performance than the conventional CT-based CADx method from three sets of pathologically proven 

lesion datasets.  
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1. INTRODUCTION  

N computed tomography (CT) imaging, different tissue types can be represented by the linear attenuation 

coefficients (LACs) [1]. Based on the well-established X-ray physics inside the human tissues [2], Fig. 1(a) shows 

the LACs as a function of the X-ray energy for four important human body tissues, i.e., bone, muscle, fat, and lung, 

and water as the reference.  Fig. 1(b) shows the difference between these tissues in terms of CT values.  Fig. 1(c) is a 

zoomed version of Fig. 1(b) to emphasize the differences among muscle, fat, lung and water. It is clearly seen that 

different tissue types have their energy responses along the energy axis, which we call tissue-energy response (TER) 

in this study.  The different TERs shall bring more tissue contrast distribution information in a series of monoenergetic 

images than that of the single image reconstructed from the conventional CT, which uses a wide spectrum and could 

not take the response into consideration.  More tissue contrast distribution information shall enhance tissue 

characterization and, therefore, improve lesion diagnosis. If the energy-independent fraction of each tissue can be 

obtained, a series of virtual monoenergetic images (VMIs) is able to be generated by the TER curve. Hence, photon-

counting CT (PCCT) [3] and multiple energy spectral CT (MECT) [4-6] are recently developed to reconstruct the 

energy-independent fractions with multiple energy measurements and then generate a series of VMIs. However, they 

require the use of expensive photon counting detection technology and/or sophisticated image reconstruction methods. 

Following the physics behind the TER, this study explores an alternative approach to use the TER to generate a series 

of VMIs from a conventional CT image to further extract contrast textures for lesion diagnosis.  An assumption is 

made that the conventional CT image is obtained from the effective energy of the energy spectrum used by the 
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conventional CT.  For example, if conventional CT operates on a 120kVp X-ray tube voltage, the effective photon 

energy would be 75keV. With the identified location in the TER curve, a series of VMIs are obtained by the relative 

factor along the energy axis. 

With the above VMIs, a machine learning (ML)-based CADx model is proposed to differentiate malignant from 

benign lesions by exploiting the energy-enhanced material features, which uses automatically extracted features by 

deep learning (DL) technics. DL-based CADx algorithms, more specifically convolutional neural network (CNN), 

have achieved noticeable successes in the differentiation of malignant and benign lesions [7-11].  Due to the advanced 

feature learning power, a multi-channel 3D CNN-based CADx model is developed in this study to help recognize 

energy-specific features to differentiate malignant lesions from benign ones. The final classification result will reflect 

the CADx performance with the explored spectral information. 

The remainder of this paper is organized as follows.  Section II will describe the proposed computer-aided diagnosis 

framework and the overall workflow. Section III presents the experiment design and results.  Discussion and 

conclusions are drawn in Sections IV and V. 

2. METHODS 

An overall illustration of our proposed lesion diagnosis pipeline can be found in Fig.2. Fig.2(a) shows the traditional 

diagnosis pipeline, the conventional CT data is directly used in the ML-based CADx model. As shown in Fig.2(b), 

our proposed framework is composed of two components: one is virtual monoenergetic images (VMIs) generation by 

the use of TER and the other is ML-based CADx model for classification. The details of each are described as follows. 

2.1 CT Image-based Virtual Monoenergetic Images Generation by the Use of TER 

In a CT image, a linear attenuation coefficient can be represented by 𝑅 types of tissues, e.g. muscle, fat, lung, bone, 

and so on.  The LAC function 𝜇𝑗(𝜀) at the 𝑗𝑡ℎ pixel of the image is decomposed as: 

 
(a) 

 
(b)                                                           (c) 

Fig. 1:  Tissue energy response curve. (a) Log visualization for linear attenuation coefficients curve; (b) HU curve; (c) Zoomed HU curve. 

                 
(a)                                                                                                     (b) 

Fig. 2:  Illustration and comparison between traditional and our proposed method for lesion diagnosis. (a) Traditional ML-based CADx pipeline. 

(b) Our proposed ML-based CADx pipeline with the VMIs generated by the use of TER. 

Proc. of SPIE Vol. 12304  123041L-2



 

 

 

 

𝜇𝑗(𝜀) = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗
𝑅
𝑟=1 ,                          (1) 

where 𝜇𝑟(𝜀) denotes linear attenuation coefficient of tissue 𝑟  at energy 𝜀   as shown in Fig.((a). Notation 𝑓𝑟𝑗  is a 

unitless tissue fraction that quantifies the contribution of tissue 𝑟 to attenuation in pixel 𝑗. Once the tissue fractions 

are identified, a series of  VMIs can be generated.  

1) Region of interest (ROI) selection 

For lesion diagnosis, an ROI containing the lesion is firstly selected from the whole CT image. An example of ROI 

selection from one patient slice for lung nodule diagnosis is shown in Fig. 3. 

2) Tissue fractions identification 

Due to the polychromatic X-ray source, a CT ROI image 𝜇𝐸1 reconstructed by filtered backprojection (FBP) method 

reflects the attenuation  coefficients at the effective energy with the tube voltage 𝐸1 kVp as follows, 

𝜇𝑗
𝐸1 = ∑ 𝜇𝑟(𝐸1

𝑒𝑓𝑓
)𝑓𝑟𝑗

𝑅
𝑟=1 ,                       (2) 

where 𝐸1
𝑒𝑓𝑓

 denotes the effective energy the selected tube voltage 𝐸1. To identify the tissue fractions, the CT image is 

first segmented into four tissue types including lung tissue, fat, bone and muscle by a threshold method. And then, for 

each tissue region, the tissue fraction 𝑓𝑟𝑗 can be obtained by 
𝜇𝑗

𝐸1

𝜇𝑟(𝐸1
𝑒𝑓𝑓

)
. In this work, we assumed 𝐸1

𝑒𝑓𝑓
= 75 when a 

conventional CT scan at 𝐸1 = 120 kVp. And 𝜇𝑟(𝐸1
𝑒𝑓𝑓

) can be directly found with TER as shown in Fig.1(a). 

3) Virtual monoenergetic CT images generation 

Based on the identified tissue fractions  a series of VMIs at selected 𝑛 energies are generated with the corresponding 

tissue LACs as follows.   

𝜇𝑗
𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝜀) = ∑ 𝜇𝑟(𝜀)𝑓𝑟𝑗𝑟 ,                     (3) 

In this work  𝑛 = 10  the energy values are used by 5  8  (0  (2  (5  20  25  30  35  40 and 45 keV as an example. It 

is because that as shown in Fig. ((c)  the HU values of different tissues have the maximum differences in this energy 

range and the contrast features could be efficiently enhanced. 

2.2 Machine Learning (ML)-based CADx 

4) Deep learning (DL)-based CNN model: 

For the DL-based model, a 3D CNN architecture with a multi-channel input is developed, which uses each energy 

image as one input channel as shown in Fig. 4. First, four convolutional layers are used to extract the features, which 

are then pooled together with a global average pooling (GAP3D) layer such that the final features have a global 

receptive field.  At last, a fully connected (FC) layer-based classifier is adopted to distinguish the malignant and benign 

lesions. Specifically, each convolutional layer consists of three operators: 3D convolution (Conv3D), 3D average 

pooling (Avgpolling3D), and rectified linear unit (ReLU).  And the binary cross-entropy loss is utilized to train the 

model. The details of the CNN model are listed in Table I. 

 
Fig. 3:  An example of ROI selection from the CT image for lung nodule diagnosis.  The display window is [0 0.35] cm-(. 

 
Fig. 4: The 3D CNN architecture of CADx for lesion diagnosis. 
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Based on the above model, the final classification results will show the lesion diagnosis performance with the VMIs 

generated by the TER. 

3. EXPERIMENTS AND RESULTS 

3.1 Datasets 

In this study, three pathologically proven clinical datasets consisting of colon polyp and lung nodules are used to 

evaluate our proposed method. All the patients were recruited to this study under informed consent after approval by 

the Institutional Review Board.  Details are presented in Table II. 

1) Dataset 1 

In dataset (  59 patients were scanned by a conventional CT at (20 kVp with automatic exposure control at the 

University of Wisconsin  USA.  A total of 63 colon polyp masses were found and resected by the clinical examination.  

The pathological reports indicate 3( benign and 32 malignant polyps.   

2) Dataset 2 

In dataset 2  66 patients were scheduled for CT-guided lung nodule needle biopsy at (20 kVp with automatic 

exposure control at Stony Brook University Hospital  USA.  With the pathological reports  a total of 67 lung nodules 

with (8 benign and 49 malignant were confirmed.  

3) Dataset 3 

In dataset 3  ((4 patients were scheduled for CT-guided lung nodule needle biopsy with X-ray exposure of clinical 

dose at (20 kVp  (00 mAs in Stony Brook University Hospital  USA.  With the pathological report  a total of ((4 lung 

nodules with 50 benign and 64 malignant were confirmed.   

3.2 CNN Training Implementation 

For the input to the CNN-based implementation, we first converted each n-energy data with the resolution of 

64×64×64 voxels.  And these converted energy volumetric images were fed into the multi-channel 3D CNN as shown 

in Fig. 4 for training.  And the target is the results from the pathological reports of the malignant and benign lesions.  

The k-fold (k=5) cross-validation was implemented to test the robustness and avoid data bias. The procedure is as 

follows.  We firstly shuffled the dataset randomly and split it into 5 folds.  For each fold  we randomly divided the 

dataset into training and testing datasets.  And then we trained a model on the training dataset and evaluated it on the 

testing dataset. Finally  we retained the evaluation score for each fold and the average score was calculated.  In this 

study  the CNN model was trained for (00 epochs with a learning rate of 0.00( and batch size of 8 using Adam 

optimizer [(2]. 

3.3 Classification Performance 

For the DL-based CNN model  the conventional CT and the enhanced (0-energy VMI data generated by the use of 

TER were incorporated into our 3D-CNN network, respectively. We calculated the mean values of AUC scores, which 

are shown in Table III.  The results demonstrated that the VMIs data with the TER achieve higher mean AUC values 

TABLE II:  DATASETS INFORMATION 

Dataset 
Total 

Number 

Benign 

(0) 

Malignant 

(1) 

Pathological 

Report 

Dataset 1 63 31 32 ✓ 

Dataset 2 67 18 49 ✓ 

Dataset 3 114 50 64 ✓ 
 

TABLE I:  DETAILS OF NETWORK DESIGN 

Layer Type Channels Kernel Size Padding Stride Activation 

1 Conv3D 32 (7,7,7) (1,1,1) (1,1,1) ReLU 
2 Avgpooling3D - (2,2,2) - (2,2,2) - 

3 Conv3D 64 (5,5,5) (1,1,1) (1,1,1) ReLU 

4 Avgpooling3D - (2,2,2) - (2,2,2) - 
5 Conv3D 128 (3,3,3) (1,1,1) (1,1,1) ReLU 

6 Avgpooling3D - (2,2,2) - (2,2,2) - 

7 Conv3D 128 (3,3,3) (1,1,1) (1,1,1) ReLU 
8 Avgpooling3D - (2,2,2) - (2,2,2) - 

9 GAP3D - - - - - 

10 FC 128 - - - - 
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than the conventional 120 kVp data, which verifies the effectiveness of the contrast enhancement brought from the 

VMIs. The AUC values of each dataset can be improved 6.51%, 16.91%&12.55% for lesion characterization, 

respectively. This is powerful proof that our proposed CADx model could benefit from the energy spectral information 

in VMIs. 

4. DISCUSSION 

This study aims at exploring the energy spectral information from a conventional CT image by using the TER to 

generate VMIs for lesion diagnosis. The proposed CADx framework with the VMIs achieved improved diagnosis 

performance than the traditional CADx pipeline with the conventional CT data. As we have demonstrated in this work, 

the VMIs at different energy bins show significant effectiveness for lesion characterization. How to choose the energy 

range and energy number of the VMIs to capture the meaningful lesion features is still a promising direction [13]. 

With the analysis from the above, this work will also have a great potential in guiding the energy selection in PCCT 

imaging for diagnosis. Meanwhile, to compare the PCCT images from the practical measurements with the VMIs by 

the use of TER from the conventional CT would be a very interesting research topic in the future. And last but not 

least, clinical evaluations with more disease data sets are needed to test the robustness of the proposed method. 

5. CONCLUSIONS 

In conclusion, we proposed to use tissue-energy response to generate the virtual monoenergetic images from the 

conventional CT for CADx of lesions. In this framework, each tissue contrast distribution along the energy axis is 

fully enhanced, which brings richer information to ML-based CADx. Experimental results demonstrated that the VMIs 

generated with the use of TER from the conventional CT applied to the ML-based CADx obtain better performance 

than the traditional CADx pipeline in lesion classification. 
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TABLE III:  MEAN AUC VALUES FOR DL-BASED CNN DIAGNOSIS 

MODEL  

Data  
Input 

Dataset 
1 

Dataset 
2 

Dataset 
3 

Conventional CT (120kVp) 74.20 52.42 59.54 

VMIs with TER 80.71 69.33 71.97 
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