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Abstract. We present an approach for significantly improving the
quantitative analysis of motion in noisy fluorescence microscopic im-
age sequences. The new partial differential equation based method is
a general extension of a 2-D nonlinear anisotropic diffusion filtering
scheme to a specially adapted 3-D nonlinear anisotropic diffusion
filtering scheme, with two spatial image dimensions and the time t in
the image sequence as the third dimension. Motion in image se-
quences is considered as oriented, line-like structures in the spa-
tiotemporal x, y, t domain, which are determined by the structure ten-
sor method. Image enhancement is achieved by a structure adopted
smoothing kernel in three dimensions, thereby using the full 3-D in-
formation inherent in spatiotemporal image sequences. As an ex-
ample for low signal-to-noise ratio (SNR) microscopic image se-
quences we have applied this method to noisy in vitro motility assay
data, where fluorescently labeled actin filaments move over a surface
of immobilized myosin. With the 3-D anisotropic diffusion filtering
the SNR is significantly improved (by a factor of 3.8) and closed object
structures are reliably restored, which were originally degraded by
noise. Generally, this approach is very valuable for all applications
where motion has to be measured quantitatively in low light level
fluorescence microscopic image sequences of cellular, subcellular,
and molecular processes. © 2003 Society of Photo-Optical Instrumentation Engi-

neers. [DOI: 10.1117/1.1527627]
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Despite the advances in microscopic techniques, the analy-
h_sis of fluorescence images is still very challenging due to
several problems inherent to microscopic fluorescence im-
ages. Generally, when recording high spatially and temporally

1 Introduction

The development of sophisticated fluorescence imaging tec
niques has led to an enormous growth in our understanding of

<I:Eellula'r ’ ||Sut?]ce::wﬁr,t and mlolecdular f.rcl)cess?st. and ffunc;non. resolved dynamic processes as microscopic image sequences,
Specially the high temporal and spatial resolution of modern o signal-to-noise rati(SNR) is very low due to the limited

fluorescence microscopic methods has led to their widespread, ,ount of fluorescence photons available for detection.
use in biomedical, biotechnical, and biophysical research as aTherefore, image sequences of dynamic processes pose very
standard toot. Common applications include regulation of high demands on automated methods for image analysis in
cellular functions by second messengers, structural studies ofgeneral. Especially when quantifying motion, concepts have
cellular components, metabolic pathway analysis, and singleto be derived that yield the highest accuracy possible for this
molecule studies for the basic understanding of the complex dynamic low light level data.
molecular interactions involved in cellular processes. In previous work we successfully demonstrated the use of
an optical flow based orientation analysis meth@iD
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Fig. 1 Noise in microscopic fluorescence image sequences of single actin filaments. The top row shows three images of a fluorescence time series
of actin filament motion in the in vitro motility assay. The motion of the fluorescently labeled actin filaments is visible as the displacement of
rod-like objects. A magnification of the image area indicated by the rectangle is given in the middle row. The high amount of noise inherent to
dynamic molecular fluorescence data leads to the degradation of filaments (marked by arrows). If a standard threshold algorithm is applied (lower
row) this results in nonclosed objects (marked by arrows). The scale bar is 10 um.

structure tensor methpdor analyzing the velocity distribu-  method does not allow the direct analysis of object features.
tion of actin filament movement in tha vitro motility assay. Therefore, we have now developed a method for increas-
In this experiment, originally devised by Kron and Spudich, ing the signal-to-noise ratio and for an accurate object resto-
fluorescently labeled actin filaments move over a surface of ration in image sequences, which is based on a spatiotemporal
the immobilized motor protein myosin. It is routinely used for anisotropic diffusion filtering method. It also uses the struc-
studying the interaction of the proteins actin and myosin dur- ture tensor for a 3-D analysis of the spatiotemporal image
ing force productiofi®® and its modulation by basic cellular  structure, which is subsequently used for a structure adopted
factors such as, e.g., myosin isoformpH and regulatory image smoothing. In contrast to existing 2-D anisotropic dif-
proteins® or medically relevant substances such as, e.g., vola- fusion filtering methods, the additional use of the temporal
tile anesthetic8.This experiment is an ideal example for high information of image sequences leads to a significant im-
spatially and temporally resolved fluorescence microscopic provement in image denoising. Additionally, the use of accu-
image sequence data, where motion has to be measured quarrate filterd? and optimized discretization schemes, as de-
titatively and where the high amount of noise requires robust scribed in Sec. 2, is crucial for an optimal performance of the
and precise algorithms for motion analysis. Figure 1 shows a image enhancement algorithm. As we will show, our method
typical example ofin vitro motility assay image sequence even allows the restoration of objects, which are degraded by
data, where actin filament motion is visible as the displace- the high amount of noise present in these molecular fluores-
ment of rod-like objects. The zoomed image parts in the cence images without morphological errors, a prerequisite for
middle row visualize that the high amount of noise leads to a an accurate analysis of dynamic particle properties. In order to
degradation of filamentémarked by arrows which poses quantify the precision of the method under known conditions
severe problems for standard threshold operations, as can beve have additionally applied it to computer-generated test
seen in the lower row of Figure 1. These large segmentation data. Preliminary results of this work have been presented in
errors are one of the main reasons that many of the classicalconference talk$>**

particle tracking approaches for motion analysis fail to pro-

duce reliab_le results in this kind of noisy imag_e sequence 9 Materials and Methods

data, as pointed out by several grodpgé quantitative com- ) o

parison of algorithms for tracking single fluorescent 21 Anisotropic Diffusion

particle3’ has shown that different tracking approaches There is a large amount of partial differential equati®iDE)
should be considered under the various experimental condi-methods for image processing described in literattité!’
tions, especially for different levels of noise. As mentioned including anisotropic diffusion. Numerical techniques include
before, the 3-D structure tensor method is ideally suited for finite element$? lattice Boltzmann techniquedawerth et al.

the accurate and robust determination of the velocity distribu- in Ref. 19, and finite difference schemé&%:?2The numerical
tions of moving actin filaments in this experiment, avoiding scheme used here was previously presented for the 2-D
the various problems using particle tracking approaches. case?®>?*Its most prominent property is excellent directional
However, if particle properties are of interest, this pixel-based behavior due to the use of optimal derivation filters. As mo-
approach cannot be directly applied since the structure tensortion in image sequences is equivalent to orientation in a spa-
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Fig. 2 Principle of anisotropic diffusion filtering. Image smoothing is
considered as a nonlinear anisotropic diffusion process with structure
adopted diffusion coefficients. This description is equivalent to image
smoothing with Gaussian filters, where the smoothing kernel is struc-
ture adopted. The adaptation is such that smoothing is isotropic for
areas without object structures and for edges and corners smoothing is
primarily parallel to the direction of the structure and minimal per-
pendicular to it. Note: for simplicity the principle is shown for the two
spatial image dimensions, whereas the method presented in this paper
is a full 3-D anisotropic diffusion filter, with the two spatial image
coordinates and the time t as the third image coordinate.

tiotemporal image stack, directional accuracy is crucial for
denoising without changing the speed of moving object. Thus
we have extended this scheme to three dimensions and furthe
enhanced it by additionally considering the error te(see
below).

2.1.1  Principle of Anisotropic Diffusion Filtering

Every dimension of an image sequence will be treated as a
spatial dimension, thus a 2-D image sequence is treated as a

3-D data set. The original image will be changed by applying
anisotropic diffusion, which is expressed by a diffusion time
t.

It is well known in image processing that isotropic smooth-
ing (or blurring with a Gaussian or binomial filter corre-
sponds to linear diffusiordu/dt=DAu, where u(x,t) de-
notes the original image;, is the diffusion time,A is the
Laplace operator, anB corresponds to the diffusion coeffi-
cient. Thus for the scope of this paper anisotropic nonlinear
diffusion can be considered as anisotropic smoothing by a
deformed Gaussian as illustrated in Figure 2. Therefore
smoothing and diffusion will be used synonymously in the
remainder of the paper. It should be noted that when using
anisotropic diffusion one also needs to carefully consider fur-
ther properties of this method as, e.g., influences of the so-
called shock term or backward diffusion. A basic assumption
for the successful use of the method is that “signal” consists
of oriented structures and “noise” is uncorrelated and thus
has no preferred orientation. Consequently, fast damping of
uncorrelated structures while preserving oriented structures
will result in efficient denoising. We achieve this aim by large
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diffusion along oriented structures and almost no diffusion
perpendicular to them.

2.1.2 Mathematical Formulation

Anisotropic diffusion with a diffusion tensor evolves the ini-
tial imageu under an evolution equation of type

o V-(DV 1
with the evolving imagei(x,t), diffusion timet, 3-D deriva-
tion vectorV = (dy1,dx2,43), and diffusion tensob, a posi-
tive definite, symmetri@ X 3 matrix. It is adapted to the local
image structure measured by the structure tedsor

J,(Vug) =G *(VuVuy), 2

with convolutionx, a Gaussiait, with standard deviatiop,

andu, :=Gg+u, a regularized version afi. The normalized
eigenvectorg; of J, give the preferred local orientations, and
its eigenvaluesw; give the local contrast along these direc-
tions. The structure tensor is highly robust under isotropic
additive Gaussian noigé.Using a diagonal matritM with

M;; =i, J, can be written

()

The diffusion tensoD uses the same eigenvect@s With
the directional diffusivities\1, A,, A3 and a diagonal matrix
A with Aj;;=\; it becomes

J,=(e1.6;,65)M(ey,€5,03)".

D=(e;,65,63)A(€1,65,€3)".

4

mhe directional diffusivities\; determine the behavior of the

diffusion. They shall be high for low values @f; and vice

versa. In our application we use
1

A= p[
1-(1-c)ex

wherece]0,1], d>0, and >0 corresponds to the global
absolute noise level. The condition numberdfis bounded

by 1/c. Instead of this choice other functions can be used. In
comparative testésee Sec. Bwe also use nonlinear isotropic
diffusion with Tuckey’s biweight in two and three dimen-
sional(see, e.g., Ref. 27and edge-enhancing diffusion in two
dimensiong! So far the continuous equations for anisotropic
diffusion have been described. We now proceed by describing
their discretization.

(ni—0)?

else ®

2.1.3 Discretization with Optimized Filters
Equation(1) can be solved using an Euler forward approxi-
mation fordu/dt:

u:+1_ |

4 _v.(DVU)
T
<:>U:+1=[1+ T(&xlvaxbaxz’)D(axlv&xZ10x3)T]u=

=(1+71 AU}, (6)



whereris the time step size arud denotes the approximation
of u(x,t) in the voxeli at (diffusion) time |- 7. As defined
above,A! denotes the spatial operat®r D!V. We use opti-
mized separable first-order derivative filters to discrefize
(see Ref. 12 for the 2-D caselhey are composed of a com-
mon 1-D derivative stencile.g.,[ —1,0,1]/2h), denotedD,
whereh is the spatial discretization stépe., h® is the voxel
volume and 1-D smoothing kernel®.g.,[ 3,10,3]/16h), de-
notedB in all other directions:

()

where{i,j,k} is a permutation of1,2,3, lower indices at the
brackets give the direction of the kernel,is a convolution,
andO(h?) is the numerical discretization error term of order
2 vanishing forh—0. These filters approximate rotation in-
variance significantly better than related popular stencils by
an order of magnitud¥

We can further exploit the error terf®(h?), which is

9%, = Dy* By * By +0(h?),

Spatiotemporal Anisotropic Diffusion

1 GB RAM). Computation time for the anisotropic diffusion
image denoising of an image sequeb&2x 512,75 frame$

is 208 s per iteration. Usually between 5 and 50 iterations
suffice for most denoising tasks.

2.2 In vitro Motility Assay

2.2.1 Proteins and Experimental Chamber

The detailed description of protein isolation, solutions, and
the preparation of the flow cell for the vitro motility assay
can be found in Ref. 2. In brief, rabbit skeletal muscle heavy
meromyosin(100 wg/ml) was bound to the bottom of a mi-
croscopic flow chamber, consisting of22x 50 mn? glass
microscope slide and 22x40 mn? precleaned coverslip
coated with 0.1 % nitrocellulose dissolved in amyl acetate.
Rabbit skeletal muscle actin was prepared according to Pardee
and Spudicf with minor modifications as described in Ref. 2
and labeled with the fluorescent probe tetramethylrhodamin-
phalloidin (R-415, Molecular Probes, OR, U$AActin fila-

always present. Numerical consistency does not define thements(0.5 ug/ml) were added to the flow chamber and move-

behavior ofA: for high spatiotemporal frequenci&sThus the
properties ofA! can be influenced there without altering nu-
merical consistency order in the following way: we add and
subtract the identity operatdrin Eq. (6), and therefore
ultl=(1+7Ahu!

)

can be rewritten as:

ultt={1+ A+ x(1,— 1), 9

wherey is a scalar used as tuning parametet, landl, were
implemented identically the additional terg{l,—1;) in Eq.
(9) cancels out. As we want to modify the error behavler,
andl, are implemented with different error behavior. There-
fore, the first identityl ; is implemented by a scalar 1, thus
without any error. The second identity is implemented with
a discretization error of order 4 as separable convolution ker-
nel[—1,4,10,4;-1]/16h applied to the three spatiotemporal
directionsx,y,t.* Consequently we solely get a modification
in the error term and the update rule in Ef).

The following algorithm is repeated for every time step

Calculate the structure tensdfEqg. (2)].

Get the diffusion tensdd by J [Egs.(3) and (4)].
Calculate the fluj; :==[_1D; mdxmU, Yie{l,...n}.
CalculateAju;=V - (DVu;) by Ailui=30_1x jm-
Calculate Izu! by convolving u with [—1,4,10,4,
—1]/16h in x,y, andt direction.

Update in an explicit way byl "*=[1+ rAl+ x(I,
—1)]ul.

o > w Db pE

The iteration number itN and the total diffusion timél is
T=7N.

The anisotropic diffusion algorithm is implemented using
the image processing software Heurisko 48&0N, Hanau,
Germany on a PC-based systefimtel Pentium IIl, 700 MHz,

*As I, has no quadratic term it does not act as diffusion.

ment was initiated by adding a solution containing 2 mM ATP.
All experiments were carried out at room temperature, ionic
strengthl'/2=50 mM, and pH 7.4.

2.2.2  Fluorescence Imaging

The movement of the labeled actin filaments is observed with
a high-resolution epifluorescence setup consisting of an in-
verted microscopglX70, Olympus, Japanequipped with
epifluorescence illuminatioriXe-light sourcé and a 100X
objective(UPLANFL, 1.3 NA, oil, Olympus, JapanThe ex-
citation bandpass filter is centered at 550 nm with a band-
width of 10 nm, the beam splitter is at 560 nm, and the emis-
sion filter is centered at 580 nm with a bandwidth of 8 nm.
The acquisition of the fluorescent image sequences is carried
out with an intensified CCD camef&uminescence Imager,
Photonic Science, UKwith fiber optical coupling. The image
sequence$512x 512 pixel, 8 bit, 100 imagesare digitized
with 25 Hz temporal resolution using a PC-based frame grab-
ber system(Meteor, Matrox, CanadaThe analysis and fur-
ther evaluation is carried out on a different PC-based com-
puter system as described before. Additionally, the raw
sequences are stored on video t&p6-7355, Panasonic, Ja-
pan for documentation.

3 Results

As shown in Figure 3 we have first applied the method to
computer-generated test sequences in order to characterize the
performance of the anisotropic diffusion filter method under
known conditions. The test sequences are similar to the ones
used in Ref. 2. In brief, rod-like objects with a gray value of
200 move against a black background with gray level 0. The
objects move with defined displacements of 1 pixel/frame for
the objects moving ix andy directions and in approximate
circles and withy2 pixel/framefor the objects moving in a
45-deg angle. These two velocity populations are visible in
the velocity histogram for the test data without noise in the
left column of Figure 3. All histograms are obtained with the
structure tensor methddThe addition of Gaussian noise to
the test sequences generally leads to the broadening of the
velocity distribution? The level of noise added to the test data
43
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Fig. 3 Test pattern used to analyze the accuracy of the anisotropic diffusion filtering method. The rod-like objects (gray value 200) move in the x,
y direction, in a 45-deg angle, and in approximated circles, respectively, versus a black background (gray value zero). The test pattern with no noise
is shown on the left and the test pattern with added Gaussian noise with a standard deviation of 70 gray values is shown in the middle panel.
Application of the 3-D anisotropic diffusion filtering to the middle panel resulted in the panel shown on the right. In the middle row the
magnifications of an image area, which is indicated by the rectangle in the original image, clearly show that the anisotropic diffusion filtering
successfully restores the objects degraded by the added noise, while simultaneously eliminating the background noise. The respective velocity
histograms as obtained with the structure tensor method? for the moving test objects are given below each panel. The restoration of the two velocity
populations is successfully achieved by the 3-D anisotropic diffusion filtering and furthermore the peak velocities are very precisely restored.

in the middle column of Figure 3 has been chosen such that it SNR= 7.6 for the data obtained with the anisotropic diffusion
is larger than the limit where the structure tensor and classicalfjltering. Hence, an improvement in signal-to-noise ratio by a
particle tracking algorithms yield reliable results for the ve- t5ct0r 3.8 is achieved.

locity distribution. The addition of Gaussian noise with a stan- The noise reduction is also reflected in the velocity histo-
dard deviation of 70 gray values to the test sequefrnéddle
column in Figure 3 leads to a velocity distribution, where
both velocities populations cannot be separated by automate . . .
algorithms. App?yi?]g the spatiotemporal gnisotropi)é diffusion =1 P 'X‘?" fra_me are _drasucally reduced. Moreover, the aniso-
filtering to the noisy image sequence yields the denoised im- tropic d!ffusmn fllterlng successfully restores the two velocity
age data shown in the right panels. The signal-to-noise level isPoPulations present in the test data. Most importantly, the
significantly improved and objects can be easily detected Mean velocities of both filament movements, as derived from

without morphological changes in object shape induced by the the mear of a Gaussian data fit applied to both peaks in the

gram of the processed data, where the artifacts in velocity
dpletermination originating  from  noise (velocities

algorithm. Defining the signal-to-noise ratio aSNR histogram, are very precisely restorgd=1.04 pixel/frame
=20« |Og[(g—b)/Ag]’ Whereg is the mean gray value of an with a broadness of the distribution of 0.12 piXel/frame, as
object,b the mean background noise level, akd the stan- obtained from twice the standard deviatiom, and w
dard deviation of the gray values of an objétthe signal-to- =1.42 pixel/framewith a broadness of 0.22 pixel/framé&he

noise-ratio for the filament-like structures in the original noisy error in peak velocity is below 5 %, which is remarkable,
image sequence is computed 38R=2.0 in comparison to since the two filament populations could not be separated in
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yields closed objects without introducing morphological
changes in filament shape for almost all filament degradations
in these image sequences.

In Figure 5 a more detailed analysis of the denoising
schemes is exemplarily given for the filament marked by a
solid arrow in Figure 4. The gray level intensities are plotted
perpendicular to the filament axipanels A to F and along
the filament axigpanels A2 to F2 It can be clearly seen that
only the anisotropic diffusion scheniganel F2 restores a
homogenous gray value profile along the filament axis,
whereas all other methods retain some filament discontinui-
ties, making it difficult to set automatic threshold levels for an
accurate and reliable object segmentation. As previously de-
scribed for the computer-generated test data in Figure 3, the
calculation of the signal-to-noise ratio for the original noisy
motility assay image data and the data processed with the
anisotropic diffusion filter methodpanel F2 again yields a
significant improvement of the signal-to-noise ratio by a fac-
tor 3.8. For the edge-enhancing diffusion algorithm in panels

10 ym C and C2 to restore a homogenous gray value profile it is
necessary to set the smoothing parameters such that it intro-

Fig. 4 Comparison of various filtering methods. (A) Unprocessed duces heavy filament morphological errors due to an over-
original fluorescence microscopic data of actin filament movement in smoothing. The overall tendency of the various methods to

the in vitro motility assay. (B) Smoothing with a 5X5 binomial filter.
(C) Edge-enhancing diffusion filtering in two dimensions. (D) Isotropic
nonlinear smoothing with a spatiotemporal diffusion filter using Tuck-

blur structures can be quantified using the perpendicular in-
tensity cuts. The values of the full widths at half maximum

ey’s biweight in two dimensions and (E) in three dimensions. (F) Spa- (FWHM) obtained from GaUSSia_n fits applied to the data are
tiotemporal anisotropic diffusion filtering with the new scheme yields as follows. A: FWHM 0.34um (this value corresponds to the
the best results for reducing the noise and restoring the morphology of FWHM of the microscopic point spread functioi: FWHM
objects. 0.50 um, C: FWHM 0.92 um, D: FWHM 0.93 um, E:

FWHM 0.45 um, and F: FWHM 0.57um. This data is a
representative example for the fact that the new anisotropic

the original noisy data. This result proves that the spatiotem- diffusion filter scheme performs best in restoring a homog-
poral anisotropic diffusion filtering does not introduce veloc- €nous gray value profile along the filament axis with a mod-
ity artifacts into the image sequences, a prerequisite for the erate tendency to blur edges and corners. It is also best suited
use of a filter method in quantitative analysis of motion in tO detect structures close to the noise level as, e.g., the fila-
image sequences. ment marked by the dashed arrow in Figure 4. Thus, the data

The power of the 3-D anisotropic diffusion filter method in obtained with the 3-D anisotropic diffusion filter scheme al-
denoising fluorescence microscopic image sequences of singldows a reliable segmentation of objects and the analysis of
actin filaments is shown in Figure 4. Additionally a compari- filament properties without significant artifacts due to noise or
son with commonly used binomial and diffusion filtering Morphological changes introduced by the denoising scheme.
schemes is also givefall schemes were implemented with
optimized filters and accurate discretizajioRow A shows . .
the unprocessed original fluorescence image data demonstrat4 Discussion
ing the high amount of noise resulting in filament degradation. In summary we have presented a new method for the en-
Applying a standar® X 5 binomial filter results in the images  hancement of noisy fluorescence microscopic image se-
shown in row B. The SNR is still very low. Using an edge- quences. The method is based on a 3-D anisotropic diffusion
enhancing diffusion scheme in two dimensithhteads to filtering scheme, with the two image coordinates and the time
closed object structure as can be seen in row C. However, thet of the image sequence as the third image coordinate. Using
filament morphology is significantly altered by this method, fluorescence microscopic image sequences of moving actin
which introduces arbitrary errors when particle properties are filaments in thein vitro motility assay, we could demonstrate
of interest. The result of nonlinear isotropic diffusion with that this approach successfully increases the SNR, allowing a
Tuckey’s biweight’ in two dimensions is shown inrow D and  quantitative analysis of dynamic object properties, which is
the same scheme implemented in three dimensions yields thenot possible with the raw data or when denoising the data
images in row E. The 2-D scheme is not able to restore closedwith commonly used filtering schemes. The 3-D anisotropic
object structures. Therefore, it does not significantly improve diffusion scheme restores objects in noisy fluorescence image
the ability to accurately perform an object segmentation in sequences without changing the morphology of the objects of
these image sequences. The 3-D scheme with the additionalinterest. Furthermore, the precision of the scheme has been
temporal information used for smoothing significantly im- validated on computer-generated test sequences. The accuracy
proves the results and restores closed object structures excepand the restoration power of the 3-D anisotropic diffusion
for heavy filament degradation. Finally, the anisotropic diffu- scheme is mainly based dd) the novel use of optimized
sion filter scheme in three dimensions as shown in row F adaptable filters and accurate discretization schemes, which is
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Fig. 5 Exemplary comparison of filament morphology obtained with the various filtering methods. The filament morphology is quantified by
plotting the gray values perpendicular and along the filament axis of the filament marked by a solid arrow in Figure 4. The perpendicular intensity
cuts are given in panels A to F, corresponding to the nomenclature in Figure 4. The longitudinal intensity cuts are depicted by panels A2 to F2,
respectively. For a better comparison the mean background noise level has been added to the plots (solid line) as well as the mean gray value level
40% above background noise (dashed line).

46 Journal of Biomedical Optics ¢ January 2003 < Vol. 8 No. 1



particularly crucial for filtering schemes in 3 dimensions, and 7.

(2) the additional use of the temporal information inherent in
image sequences, which drastically improves the power of

reducing noise without blurring artifacts, resulting in an accu- g,

rate object restoration. Also the temporal characteristics are
not altered by this methote.g., velocities, event durations

since the smoothing kernel is also structure adopted in the
temporal domain. It should be noted that an accurate imple-

mentation of the 3-D schemes is absolutely necessary for pre-1o.

cise, stable, and robust performance. The high amount of
computing power which is necessary for the 3-D anisotropic
diffusion scheme should not be a limiting factor in the future,

as computer power will continue to increase, leading to com-

puting times in the minute range even on a single PC for 12.

typical image sequence sizes in the near future. In general,
this method is independent of object shapes and therefore it is'3
also applicable to other molecular and cellular studies such as,

e.g., the analysis of the movement of vesicles and other 14.

spherical objects. Also, the extension to multidimensional
data is generally possible with this anisotropic diffusion fil-
tering approach.

In the context of the growing importance of fluorescence

microscopic techniques in the entire field of life science, the 16.

method presented here significantly improves and extends
these methods for dynamic low light level applications. Itis -
of general use for all kinds of microscopic fluorescence image

sequence data, where the high amount of noise especially in18.

high spatially and temporally resolved image sequences has

so far limited the quantitative use and accurate analysis of the 19

data.
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