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fluorescence microscopic image sequences
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Abstract. We present an approach for significantly improving the
quantitative analysis of motion in noisy fluorescence microscopic im-
age sequences. The new partial differential equation based method is
a general extension of a 2-D nonlinear anisotropic diffusion filtering
scheme to a specially adapted 3-D nonlinear anisotropic diffusion
filtering scheme, with two spatial image dimensions and the time t in
the image sequence as the third dimension. Motion in image se-
quences is considered as oriented, line-like structures in the spa-
tiotemporal x,y,t domain, which are determined by the structure ten-
sor method. Image enhancement is achieved by a structure adopted
smoothing kernel in three dimensions, thereby using the full 3-D in-
formation inherent in spatiotemporal image sequences. As an ex-
ample for low signal-to-noise ratio (SNR) microscopic image se-
quences we have applied this method to noisy in vitro motility assay
data, where fluorescently labeled actin filaments move over a surface
of immobilized myosin. With the 3-D anisotropic diffusion filtering
the SNR is significantly improved (by a factor of 3.8) and closed object
structures are reliably restored, which were originally degraded by
noise. Generally, this approach is very valuable for all applications
where motion has to be measured quantitatively in low light level
fluorescence microscopic image sequences of cellular, subcellular,
and molecular processes. © 2003 Society of Photo-Optical Instrumentation Engi-
neers. [DOI: 10.1117/1.1527627]

Keywords: fluorescence imaging; image sequence processing; motion analysis; mo-
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1 Introduction
The development of sophisticated fluorescence imaging tech
niques has led to an enormous growth in our understanding o
cellular, subcellular, and molecular processes and function
Especially the high temporal and spatial resolution of modern
fluorescence microscopic methods has led to their widesprea
use in biomedical, biotechnical, and biophysical research as
standard tool.1 Common applications include regulation of
cellular functions by second messengers, structural studies
cellular components, metabolic pathway analysis, and singl
molecule studies for the basic understanding of the comple
molecular interactions involved in cellular processes.
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Despite the advances in microscopic techniques, the an
sis of fluorescence images is still very challenging due
several problems inherent to microscopic fluorescence
ages. Generally, when recording high spatially and tempor
resolved dynamic processes as microscopic image seque
the signal-to-noise ratio~SNR! is very low due to the limited
amount of fluorescence photons available for detecti
Therefore, image sequences of dynamic processes pose
high demands on automated methods for image analysi
general. Especially when quantifying motion, concepts ha
to be derived that yield the highest accuracy possible for
dynamic low light level data.

In previous work2 we successfully demonstrated the use
an optical flow based orientation analysis method~3-D
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Spatiotemporal Anisotropic Diffusion
Fig. 1 Noise in microscopic fluorescence image sequences of single actin filaments. The top row shows three images of a fluorescence time series
of actin filament motion in the in vitro motility assay. The motion of the fluorescently labeled actin filaments is visible as the displacement of
rod-like objects. A magnification of the image area indicated by the rectangle is given in the middle row. The high amount of noise inherent to
dynamic molecular fluorescence data leads to the degradation of filaments (marked by arrows). If a standard threshold algorithm is applied (lower
row) this results in nonclosed objects (marked by arrows). The scale bar is 10 mm.
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structure tensor method! for analyzing the velocity distribu-
tion of actin filament movement in thein vitro motility assay.
In this experiment, originally devised by Kron and Spudich,3

fluorescently labeled actin filaments move over a surface o
the immobilized motor protein myosin. It is routinely used for
studying the interaction of the proteins actin and myosin dur
ing force production4,5,6 and its modulation by basic cellular
factors such as, e.g., myosin isoforms,7 pH and regulatory
proteins,8 or medically relevant substances such as, e.g., vola
tile anesthetics.9 This experiment is an ideal example for high
spatially and temporally resolved fluorescence microscopi
image sequence data, where motion has to be measured qua
titatively and where the high amount of noise requires robus
and precise algorithms for motion analysis. Figure 1 shows
typical example ofin vitro motility assay image sequence
data, where actin filament motion is visible as the displace
ment of rod-like objects. The zoomed image parts in the
middle row visualize that the high amount of noise leads to a
degradation of filaments~marked by arrows!, which poses
severe problems for standard threshold operations, as can
seen in the lower row of Figure 1. These large segmentatio
errors are one of the main reasons that many of the classic
particle tracking approaches for motion analysis fail to pro-
duce reliable results in this kind of noisy image sequence
data, as pointed out by several groups.10 A quantitative com-
parison of algorithms for tracking single fluorescent
particles11 has shown that different tracking approaches
should be considered under the various experimental cond
tions, especially for different levels of noise. As mentioned
before, the 3-D structure tensor method is ideally suited fo
the accurate and robust determination of the velocity distribu
tions of moving actin filaments in this experiment, avoiding
the various problems using particle tracking approaches
However, if particle properties are of interest, this pixel-based
approach cannot be directly applied since the structure tens
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method does not allow the direct analysis of object featur
Therefore, we have now developed a method for incre

ing the signal-to-noise ratio and for an accurate object re
ration in image sequences, which is based on a spatiotemp
anisotropic diffusion filtering method. It also uses the stru
ture tensor for a 3-D analysis of the spatiotemporal ima
structure, which is subsequently used for a structure ado
image smoothing. In contrast to existing 2-D anisotropic d
fusion filtering methods, the additional use of the tempo
information of image sequences leads to a significant
provement in image denoising. Additionally, the use of acc
rate filters12 and optimized discretization schemes, as d
scribed in Sec. 2, is crucial for an optimal performance of
image enhancement algorithm. As we will show, our meth
even allows the restoration of objects, which are degraded
the high amount of noise present in these molecular fluo
cence images without morphological errors, a prerequisite
an accurate analysis of dynamic particle properties. In orde
quantify the precision of the method under known conditio
we have additionally applied it to computer-generated t
data. Preliminary results of this work have been presente
conference talks.13,14

2 Materials and Methods
2.1 Anisotropic Diffusion
There is a large amount of partial differential equation~PDE!
methods for image processing described in literature,15,16,17

including anisotropic diffusion. Numerical techniques inclu
finite elements,18 lattice Boltzmann techniques~Jawerth et al.
in Ref. 15!, and finite difference schemes.19–22The numerical
scheme used here was previously presented for the
case.23,24 Its most prominent property is excellent direction
behavior due to the use of optimal derivation filters. As m
tion in image sequences is equivalent to orientation in a s
Journal of Biomedical Optics d January 2003 d Vol. 8 No. 1 41
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Fig. 2 Principle of anisotropic diffusion filtering. Image smoothing is
considered as a nonlinear anisotropic diffusion process with structure
adopted diffusion coefficients. This description is equivalent to image
smoothing with Gaussian filters, where the smoothing kernel is struc-
ture adopted. The adaptation is such that smoothing is isotropic for
areas without object structures and for edges and corners smoothing is
primarily parallel to the direction of the structure and minimal per-
pendicular to it. Note: for simplicity the principle is shown for the two
spatial image dimensions, whereas the method presented in this paper
is a full 3-D anisotropic diffusion filter, with the two spatial image
coordinates and the time t as the third image coordinate.
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tiotemporal image stack, directional accuracy is crucial for
denoising without changing the speed of moving object. Thus
we have extended this scheme to three dimensions and furth
enhanced it by additionally considering the error term~see
below!.

2.1.1 Principle of Anisotropic Diffusion Filtering
Every dimension of an image sequence will be treated as
spatial dimension, thus a 2-D image sequence is treated as
3-D data set. The original image will be changed by applying
anisotropic diffusion, which is expressed by a diffusion time
t.

It is well known in image processing that isotropic smooth-
ing ~or blurring! with a Gaussian or binomial filter corre-
sponds to linear diffusion]u/]t5DDu, where u(x,t) de-
notes the original image,t is the diffusion time,D is the
Laplace operator, andD corresponds to the diffusion coeffi-
cient. Thus for the scope of this paper anisotropic nonlinea
diffusion can be considered as anisotropic smoothing by
deformed Gaussian as illustrated in Figure 2. Therefore
smoothing and diffusion will be used synonymously in the
remainder of the paper. It should be noted that when usin
anisotropic diffusion one also needs to carefully consider fur
ther properties of this method as, e.g., influences of the so
called shock term or backward diffusion. A basic assumption
for the successful use of the method is that ‘‘signal’’ consists
of oriented structures and ‘‘noise’’ is uncorrelated and thus
has no preferred orientation. Consequently, fast damping o
uncorrelated structures while preserving oriented structure
will result in efficient denoising. We achieve this aim by large
42 Journal of Biomedical Optics d January 2003 d Vol. 8 No. 1
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diffusion along oriented structures and almost no diffusi
perpendicular to them.

2.1.2 Mathematical Formulation
Anisotropic diffusion with a diffusion tensor evolves the in
tial imageu under an evolution equation of type

]u

]t
5¹•~D¹u!, ~1!

with the evolving imageu(x,t), diffusion timet, 3-D deriva-
tion vector¹5(]x1 ,]x2 ,]x3), and diffusion tensorD, a posi-
tive definite, symmetric333 matrix. It is adapted to the loca
image structure measured by the structure tensorJ:25

Jr~¹uj!5Gr* ~¹uj¹uj
T!, ~2!

with convolution* , a GaussianGr with standard deviationr,
and uj ªGj* u, a regularized version ofu. The normalized
eigenvectorsei of Jr give the preferred local orientations, an
its eigenvaluesm i give the local contrast along these dire
tions. The structure tensor is highly robust under isotro
additive Gaussian noise.26 Using a diagonal matrixM with
Mi i 5m i , Jr can be written

Jr5~e1 ,e2 ,e3!M~e1 ,e2 ,e3!T. ~3!

The diffusion tensorD uses the same eigenvectorsei . With
the directional diffusivitiesl1 , l2 , l3 and a diagonal matrix
L with Li i 5l i it becomes

D5~e1 ,e2 ,e3!L~e1 ,e2 ,e3!T. ~4!

The directional diffusivitiesl i determine the behavior of the
diffusion. They shall be high for low values ofm i and vice
versa. In our application we use

l i ªH 1 if m i<s

12~12c!expF 2d

~m i2s!2G else
, ~5!

where cP]0,1], d.0, and s.0 corresponds to the globa
absolute noise level. The condition number ofD is bounded
by 1/c. Instead of this choice other functions can be used
comparative tests~see Sec. 3! we also use nonlinear isotropi
diffusion with Tuckey’s biweight in two and three dimen
sional~see, e.g., Ref. 27! and edge-enhancing diffusion in tw
dimensions.21 So far the continuous equations for anisotrop
diffusion have been described. We now proceed by describ
their discretization.

2.1.3 Discretization with Optimized Filters
Equation~1! can be solved using an Euler forward approx
mation for]u/]t:

ui
l 112ui

l

t
5¹•~D¹ui

l !

⇔ui
l 115@11t~]x1 ,]x2 ,]x3!D~]x1 ,]x2 ,]x3!T#ui

l

5..~11t Ai
l !ui

l , ~6!
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Spatiotemporal Anisotropic Diffusion
wheret is the time step size andui
l denotes the approximation

of u(x,t) in the voxel i at ~diffusion! time l •t. As defined
above,Ai

l denotes the spatial operator¹•Di
l¹. We use opti-

mized separable first-order derivative filters to discretizeAi
l

~see Ref. 12 for the 2-D case!. They are composed of a com-
mon 1-D derivative stencil~e.g., @21,0,1#/2h), denotedD,
whereh is the spatial discretization step~i.e., h3 is the voxel
volume! and 1-D smoothing kernels~e.g.,@3,10,3#/16h), de-
notedB in all other directions:

]xi
5Dxi* Bxj* Bxk

1O~h2!, ~7!

where$ i , j ,k% is a permutation of$1,2,3%, lower indices at the
brackets give the direction of the kernel,* is a convolution,
andO(h2) is the numerical discretization error term of order
2 vanishing forh→0. These filters approximate rotation in-
variance significantly better than related popular stencils by
an order of magnitude.12

We can further exploit the error termO(h2), which is
always present. Numerical consistency does not define th
behavior ofAi

l for high spatiotemporal frequencies.12 Thus the
properties ofAi

l can be influenced there without altering nu-
merical consistency order in the following way: we add and
subtract the identity operatorI in Eq. ~6!, and therefore

ui
l 115~11tAi

l !ui
l ~8!

can be rewritten as:

ui
l 115$11t@Ai

l1x~ I 22I 1!#%ui
l , ~9!

wherex is a scalar used as tuning parameter. IfI 1 andI 2 were
implemented identically the additional termx(I 22I 1) in Eq.
~9! cancels out. As we want to modify the error behavior,I 2
and I 1 are implemented with different error behavior. There-
fore, the first identityI 1 is implemented by a scalar 1, thus
without any error. The second identityI 2 is implemented with
a discretization error of order 4 as separable convolution ker
nel @21,4,10,4,21#/16h applied to the three spatiotemporal
directionsx,y,t.* Consequently we solely get a modification
in the error term and the update rule in Eq.~9!.

The following algorithm is repeated for every time stept:

1. Calculate the structure tensorJ @Eq. ~2!#.

2. Get the diffusion tensorD by J @Eqs.~3! and ~4!#.

3. Calculate the fluxj i ª(m51
n Di ,m]x,mu, ; i P$1,...,n%.

4. CalculateAi
lui

l5¹•(D¹ui
l) by Ai

lui
l5(m51

n ]xm
j m .

5. Calculate I 2ui
l by convolving u with @21,4,10,4,

21#/16h in x,y, and t direction.

6. Update in an explicit way byui
l 115@11tAi

l1x(I 2

21)#ui
l .

The iteration number isN and the total diffusion timeT is
T5tN.

The anisotropic diffusion algorithm is implemented using
the image processing software Heurisko 4.08~AEON, Hanau,
Germany! on a PC-based system~Intel Pentium III, 700 MHz,

*As I 2 has no quadratic term it does not act as diffusion.
1 GB RAM!. Computation time for the anisotropic diffusio
image denoising of an image sequence(5123512,75 frames!
is 208 s per iteration. Usually between 5 and 50 iteratio
suffice for most denoising tasks.

2.2 In vitro Motility Assay

2.2.1 Proteins and Experimental Chamber
The detailed description of protein isolation, solutions, a
the preparation of the flow cell for thein vitro motility assay
can be found in Ref. 2. In brief, rabbit skeletal muscle hea
meromyosin~100 mg/ml! was bound to the bottom of a mi
croscopic flow chamber, consisting of a22350 mm2 glass
microscope slide and a22340 mm2 precleaned coverslip
coated with 0.1 % nitrocellulose dissolved in amyl aceta
Rabbit skeletal muscle actin was prepared according to Pa
and Spudich28 with minor modifications as described in Ref.
and labeled with the fluorescent probe tetramethylrhodam
phalloidin ~R-415, Molecular Probes, OR, USA!. Actin fila-
ments~0.5mg/ml! were added to the flow chamber and mov
ment was initiated by adding a solution containing 2 mM AT
All experiments were carried out at room temperature, io
strengthG/2550 mM, and pH 7.4.

2.2.2 Fluorescence Imaging
The movement of the labeled actin filaments is observed w
a high-resolution epifluorescence setup consisting of an
verted microscope~IX70, Olympus, Japan! equipped with
epifluorescence illumination~Xe-light source! and a 1003
objective~UPLANFL, 1.3 NA, oil, Olympus, Japan!. The ex-
citation bandpass filter is centered at 550 nm with a ba
width of 10 nm, the beam splitter is at 560 nm, and the em
sion filter is centered at 580 nm with a bandwidth of 8 n
The acquisition of the fluorescent image sequences is car
out with an intensified CCD camera~Luminescence Imager
Photonic Science, UK! with fiber optical coupling. The image
sequences(5123512 pixel, 8 bit, 100 images! are digitized
with 25 Hz temporal resolution using a PC-based frame gr
ber system~Meteor, Matrox, Canada!. The analysis and fur-
ther evaluation is carried out on a different PC-based co
puter system as described before. Additionally, the r
sequences are stored on video tape~AG-7355, Panasonic, Ja
pan! for documentation.

3 Results
As shown in Figure 3 we have first applied the method
computer-generated test sequences in order to characteriz
performance of the anisotropic diffusion filter method und
known conditions. The test sequences are similar to the o
used in Ref. 2. In brief, rod-like objects with a gray value
200 move against a black background with gray level 0. T
objects move with defined displacements of 1 pixel/frame
the objects moving inx andy directions and in approximate
circles and withA2 pixel/framefor the objects moving in a
45-deg angle. These two velocity populations are visible
the velocity histogram for the test data without noise in t
left column of Figure 3. All histograms are obtained with th
structure tensor method.2 The addition of Gaussian noise t
the test sequences generally leads to the broadening o
velocity distribution.2 The level of noise added to the test da
Journal of Biomedical Optics d January 2003 d Vol. 8 No. 1 43



Uttenweiler et al.
Fig. 3 Test pattern used to analyze the accuracy of the anisotropic diffusion filtering method. The rod-like objects (gray value 200) move in the x,
y direction, in a 45-deg angle, and in approximated circles, respectively, versus a black background (gray value zero). The test pattern with no noise
is shown on the left and the test pattern with added Gaussian noise with a standard deviation of 70 gray values is shown in the middle panel.
Application of the 3-D anisotropic diffusion filtering to the middle panel resulted in the panel shown on the right. In the middle row the
magnifications of an image area, which is indicated by the rectangle in the original image, clearly show that the anisotropic diffusion filtering
successfully restores the objects degraded by the added noise, while simultaneously eliminating the background noise. The respective velocity
histograms as obtained with the structure tensor method2 for the moving test objects are given below each panel. The restoration of the two velocity
populations is successfully achieved by the 3-D anisotropic diffusion filtering and furthermore the peak velocities are very precisely restored.
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in the middle column of Figure 3 has been chosen such that
is larger than the limit where the structure tensor and classica
particle tracking algorithms yield reliable results for the ve-
locity distribution. The addition of Gaussian noise with a stan-
dard deviation of 70 gray values to the test sequences~middle
column in Figure 3! leads to a velocity distribution, where
both velocities populations cannot be separated by automate
algorithms. Applying the spatiotemporal anisotropic diffusion
filtering to the noisy image sequence yields the denoised im
age data shown in the right panels. The signal-to-noise level i
significantly improved and objects can be easily detected
without morphological changes in object shape induced by th
algorithm. Defining the signal-to-noise ratio asSNR
520* log@(g2b)/Dg#, whereg is the mean gray value of an
object,b the mean background noise level, andDg the stan-
dard deviation of the gray values of an object,29 the signal-to-
noise-ratio for the filament-like structures in the original noisy
image sequence is computed asSNR52.0 in comparison to
44 Journal of Biomedical Optics d January 2003 d Vol. 8 No. 1
t
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d

SNR57.6 for the data obtained with the anisotropic diffusio
filtering. Hence, an improvement in signal-to-noise ratio by
factor 3.8 is achieved.

The noise reduction is also reflected in the velocity his
gram of the processed data, where the artifacts in velo
determination originating from noise (velocities
,1 pixel/frame) are drastically reduced. Moreover, the anis
tropic diffusion filtering successfully restores the two veloc
populations present in the test data. Most importantly,
mean velocities of both filament movements, as derived fr
the meanm of a Gaussian data fit applied to both peaks in t
histogram, are very precisely restored(m51.04 pixel/frame
with a broadness of the distribution of 0.12 pixel/frame,
obtained from twice the standard deviations, and m
51.42 pixel/framewith a broadness of 0.22 pixel/frame!. The
error in peak velocity is below 5 %, which is remarkabl
since the two filament populations could not be separate
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Spatiotemporal Anisotropic Diffusion
Fig. 4 Comparison of various filtering methods. (A) Unprocessed
original fluorescence microscopic data of actin filament movement in
the in vitro motility assay. (B) Smoothing with a 535 binomial filter.
(C) Edge-enhancing diffusion filtering in two dimensions. (D) Isotropic
nonlinear smoothing with a spatiotemporal diffusion filter using Tuck-
ey‘s biweight in two dimensions and (E) in three dimensions. (F) Spa-
tiotemporal anisotropic diffusion filtering with the new scheme yields
the best results for reducing the noise and restoring the morphology of
objects.
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the original noisy data. This result proves that the spatiotem
poral anisotropic diffusion filtering does not introduce veloc-
ity artifacts into the image sequences, a prerequisite for th
use of a filter method in quantitative analysis of motion in
image sequences.

The power of the 3-D anisotropic diffusion filter method in
denoising fluorescence microscopic image sequences of sing
actin filaments is shown in Figure 4. Additionally a compari-
son with commonly used binomial and diffusion filtering
schemes is also given~all schemes were implemented with
optimized filters and accurate discretization!. Row A shows
the unprocessed original fluorescence image data demonstr
ing the high amount of noise resulting in filament degradation
Applying a standard535 binomial filter results in the images
shown in row B. The SNR is still very low. Using an edge-
enhancing diffusion scheme in two dimensions21 leads to
closed object structure as can be seen in row C. However, th
filament morphology is significantly altered by this method,
which introduces arbitrary errors when particle properties are
of interest. The result of nonlinear isotropic diffusion with
Tuckey’s biweight27 in two dimensions is shown in row D and
the same scheme implemented in three dimensions yields th
images in row E. The 2-D scheme is not able to restore close
object structures. Therefore, it does not significantly improve
the ability to accurately perform an object segmentation in
these image sequences. The 3-D scheme with the addition
temporal information used for smoothing significantly im-
proves the results and restores closed object structures exce
for heavy filament degradation. Finally, the anisotropic diffu-
sion filter scheme in three dimensions as shown in row F
e
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pt

yields closed objects without introducing morphologic
changes in filament shape for almost all filament degradati
in these image sequences.

In Figure 5 a more detailed analysis of the denoisi
schemes is exemplarily given for the filament marked by
solid arrow in Figure 4. The gray level intensities are plott
perpendicular to the filament axis~panels A to F! and along
the filament axis~panels A2 to F2!. It can be clearly seen tha
only the anisotropic diffusion scheme~panel F2! restores a
homogenous gray value profile along the filament ax
whereas all other methods retain some filament discontin
ties, making it difficult to set automatic threshold levels for
accurate and reliable object segmentation. As previously
scribed for the computer-generated test data in Figure 3,
calculation of the signal-to-noise ratio for the original noi
motility assay image data and the data processed with
anisotropic diffusion filter method~panel F2! again yields a
significant improvement of the signal-to-noise ratio by a fa
tor 3.8. For the edge-enhancing diffusion algorithm in pan
C and C2 to restore a homogenous gray value profile i
necessary to set the smoothing parameters such that it in
duces heavy filament morphological errors due to an ov
smoothing. The overall tendency of the various methods
blur structures can be quantified using the perpendicular
tensity cuts. The values of the full widths at half maximu
~FWHM! obtained from Gaussian fits applied to the data
as follows. A: FWHM 0.34mm ~this value corresponds to th
FWHM of the microscopic point spread function!, B: FWHM
0.50 mm, C: FWHM 0.92 mm, D: FWHM 0.93 mm, E:
FWHM 0.45 mm, and F: FWHM 0.57mm. This data is a
representative example for the fact that the new anisotro
diffusion filter scheme performs best in restoring a homo
enous gray value profile along the filament axis with a mo
erate tendency to blur edges and corners. It is also best s
to detect structures close to the noise level as, e.g., the
ment marked by the dashed arrow in Figure 4. Thus, the d
obtained with the 3-D anisotropic diffusion filter scheme a
lows a reliable segmentation of objects and the analysis
filament properties without significant artifacts due to noise
morphological changes introduced by the denoising schem

4 Discussion
In summary we have presented a new method for the
hancement of noisy fluorescence microscopic image
quences. The method is based on a 3-D anisotropic diffus
filtering scheme, with the two image coordinates and the ti
t of the image sequence as the third image coordinate. U
fluorescence microscopic image sequences of moving a
filaments in thein vitro motility assay, we could demonstrat
that this approach successfully increases the SNR, allowin
quantitative analysis of dynamic object properties, which
not possible with the raw data or when denoising the d
with commonly used filtering schemes. The 3-D anisotro
diffusion scheme restores objects in noisy fluorescence im
sequences without changing the morphology of the object
interest. Furthermore, the precision of the scheme has b
validated on computer-generated test sequences. The acc
and the restoration power of the 3-D anisotropic diffusi
scheme is mainly based on~1! the novel use of optimized
adaptable filters and accurate discretization schemes, whi
Journal of Biomedical Optics d January 2003 d Vol. 8 No. 1 45
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Fig. 5 Exemplary comparison of filament morphology obtained with the various filtering methods. The filament morphology is quantified by
plotting the gray values perpendicular and along the filament axis of the filament marked by a solid arrow in Figure 4. The perpendicular intensity
cuts are given in panels A to F, corresponding to the nomenclature in Figure 4. The longitudinal intensity cuts are depicted by panels A2 to F2,
respectively. For a better comparison the mean background noise level has been added to the plots (solid line) as well as the mean gray value level
40% above background noise (dashed line).
46 Journal of Biomedical Optics d January 2003 d Vol. 8 No. 1
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Spatiotemporal Anisotropic Diffusion
particularly crucial for filtering schemes in 3 dimensions, and
~2! the additional use of the temporal information inherent in
image sequences, which drastically improves the power o
reducing noise without blurring artifacts, resulting in an accu-
rate object restoration. Also the temporal characteristics ar
not altered by this method~e.g., velocities, event durations!
since the smoothing kernel is also structure adopted in th
temporal domain. It should be noted that an accurate imple
mentation of the 3-D schemes is absolutely necessary for pre
cise, stable, and robust performance. The high amount o
computing power which is necessary for the 3-D anisotropic
diffusion scheme should not be a limiting factor in the future,
as computer power will continue to increase, leading to com
puting times in the minute range even on a single PC fo
typical image sequence sizes in the near future. In genera
this method is independent of object shapes and therefore it
also applicable to other molecular and cellular studies such a
e.g., the analysis of the movement of vesicles and othe
spherical objects. Also, the extension to multidimensiona
data is generally possible with this anisotropic diffusion fil-
tering approach.

In the context of the growing importance of fluorescence
microscopic techniques in the entire field of life science, the
method presented here significantly improves and extend
these methods for dynamic low light level applications. It is
of general use for all kinds of microscopic fluorescence image
sequence data, where the high amount of noise especially
high spatially and temporally resolved image sequences ha
so far limited the quantitative use and accurate analysis of th
data.
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