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ABSTRACT. Directimaging of Earth-like exoplanets is one of the most prominent scientific drivers
of the next generation of ground-based telescopes. Typically, Earth-like exoplanets
are located at small angular separations from their host stars, making their detection
difficult. Consequently, the adaptive optics (AO) system’s control algorithm must be
carefully designed to distinguish the exoplanet from the residual light produced by the
host star. A promising avenue of research to improve AO control builds on data-
driven control methods, such as reinforcement learning (RL). RL is an active branch
of the machine learning research field, where control of a system is learned through
interaction with the environment. Thus, RL can be seen as an automated approach to
AO control, where its usage is entirely a turnkey operation. In particular, model-based
RL has been shown to cope with temporal and misregistration errors. Similarly, it has
been demonstrated to adapt to nonlinear wavefront sensing while being efficient in
training and execution. In this work, we implement and adapt an RL method called
policy optimization for AO (PO4AO) to the GPU-based high-order adaptive optics
testbench (GHOST) test bench at ESO headquarters, where we demonstrate a
strong performance of the method in a laboratory environment. Our implementation
allows the training to be performed parallel to inference, which is crucial for on-sky
operation. In particular, we study the predictive and self-calibrating aspects of the
method. The new implementation on GHOST running PyTorch introduces only
around 700 ps of in addition to hardware, pipeline, and Python interface latency.
We open-source well-documented code for the implementation and specify the
requirements for the RTC pipeline. We also discuss the important hyperparameters
of the method and how they affect the method. Further, the paper discusses the
source of the latency and the possible paths for a lower latency implementation.
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1 Introduction

High contrast imaging (HCI) utilizes a combination of extreme adaptive optics (XAO) and coro-
nagraphy to generate images of faint sources near bright point sources, such as exoplanets near
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their host stars. Direct imaging of exoplanets has been largely limited to only a few dozen very
young and luminous giant exoplanets using existing HCI instruments, as documented in studies
such as Refs. 1-3. However, a greater number of planets could be directly imaged by enhancing
the sensitivity in the vicinity of the host star, with the performance of the XAO system being the
primary limiting factor in achieving such sensitivity.

In HCI, when imaging in close proximity to the star, the main performance limitations of a
well-tuned adaptive optics (AO) system controlled with the common integrator controller are
photon noise and temporal error, as noted in Ref. 4. The temporal delay error of AO systems
controlled by standard methods arises from the integration of wavefront sensor detector data,
detector readout, computation of the correction signal, and its application to the deformable
mirror (DM). This delay amounts to at least two AO system operating cycles at the maximum
camera framerate, where readout takes one entire frame, during which atmospheric turbulence
has evolved and no longer matches the DM correction precisely.

There are two ways to mitigate the adverse effect of the temporal delay error for HCI: by
increasing the operating frequency of the AO system or by implementing predictive control. The
acceleration of the AO system can be accomplished, for example, by adding a second stage
downstream from a classical first-stage AO system.’ This second-stage system solely observes
the residual from the first-stage AO system and can operate independently from the first-stage,
employing DMs that can handle fast AO loops. One such example is the upgrade of SPHERE,
which is referred to as SPHERE+,® which is expected to provide a considerable enhancement in
raw point-spread function (PSF) contrast close to the star.

The other (not mutually exclusive) approach is to use a predictive control algorithm. A big
part of the turbulence is presumably in frozen flow considering the millisecond timescale of AO
control, and hence, a significant fraction of wavefront disturbances can be predicted.” Moreover,
if the predictive control algorithm is fast enough, both strategies can be combined by operating
the faster second stage with predictive control.

Besides the performance limitations induced by photon noise and temporal error, AO can
suffer from dynamic modeling errors, such as misregistration,® optical gain effect for the Pyramid
wavefront sensor (WES).”!? Coping with these limitations usually requires external tuning and
recalibration of a possible predictive control algorithm.

This paper presents a laboratory demonstration of a data-driven predictive control algorithm
called the policy optimizations for AO (PO4A0)'' implemented on a second stage AO system
following a first stage running a classical integrator control. One of the main advantages of
implementing fully data-driven control, such as PO4AQO, is that it continuously learns a system
model from the data rather than using a static calibration or synthweifhetic model. Consequently,
it is less affected by pseudo-open-loop reconstruction errors, such as misregistration or the opti-
cal gain effect, as discussed in Refs. 11-13. Our contributions are two-fold: first, we thoroughly
test the performance and robustness of PO4AO in a laboratory setup, detailed in Sec. 7.1, under
different conditions. Second, we open-source Python-based implementation of the method that
can be implemented in any AO system that runs Python-based controllers and has GPUs. We also
discuss how the method can be tuned and further developed for different AO systems. The codes
used in this paper are available on our GitHub repository [https://github.com/jnousi/PO4AQ.git].

2 Related Work

PO4AO addresses the predictive control and reconstruction in the XAO control loop as a single
reinforcement learning (RL) problem; hence, PO4AO is related to many aspects of XAO control,
such as predictive control, optimal gain compensation, misregistration identification, reconstruc-
tion algorithms, and vibration canceling.

Remarkable progress has been achieved with various approaches to tackle the XAO control
problem. These methods include the Kalman filter-based linear controllers,'*?° sometimes
combined with machine learning for system identification.”’ These methods rely on linear
models for wavefront sensing and temporal evolution to obtain a state estimation of the system.
Other methods focus on correcting temporal error and vary from spatio-temporal linear filters to
filters operating on single modes, such as Fourier or Zernike modes.?>”>’ The predictive filters are
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obtained either from modeling or utilizing data analysis/machine learning. Some methods have
also been tested on-sky (see, e.g., Refs. 21 and 28).

Moreover, machine learning methods utilizing neural networks (NN5s) for predictive control
have been studied in Refs. 29-34, where NNs show a lot potential, especially for AO systems
with high number of degrees of freedom (DoF), and in noisy conditions. Lately, NNs, and the
more modern deep NN, have also been used for the wavefront reconstruction step (see, e.g.,
Refs. 35-38). The results indicate that NN reconstruction is less sensitive to non-linearity and
increases the operational range of the pyramid WEFS.

Finally, different NN-based RL approaches have been studied during the last years; see
Refs. 39-41. PO4AO differs from other RL methods in AO literature by using so-called
model-based RL instead of model-free RL (for a discussion on the difference between these
methods, see Ref. 11). For interested readers, Fowler and Landman® provide a more thorough
review of machine learning methods for wavefront control and phase prediction.

3 Classical Adaptive Optics Control and Baseline Controller

An AO system is commonly controlled with a linear integrator controller, referred to as the
integrator. We consider it our reference method against the PO4AO as it is still widely used
in AO. Integrator control in AO usually relies on the so-called interaction matrix mapping
DM commands to WFS measurements

Aw' = Dv' + &, (D

where Aw' = (6w}, éwh, ..., éwh) is the WFS data, v the DM commands and D is the
interaction matrix, and &, is the measurement noise typically composed of photon and detector noise.
Once the interaction matrix is estimated, the inverse problem, i.e., reconstruction v’ given Aw’,
needs to be considered. As D is generally not invertible, some regularization approach is needed.
Here, we restrict ourselves to linear methods described by a reconstruction matrix C mapping WFS
measurements to DM commands. As our regularization method, we project D to a smaller dimen-
sional subspace spanned by the Karhunen—Loéve (KL) modal basis.** Each KL mode in the basis
has a representation in terms of actuator voltages. This relation is fully determined by a transfor-
mation matrix B,, mapping DM actuator voltages to m first modal coefficients. The regularized
reconstruction matrix is now defined by the Moore—Penrose pseudo-inverse

C, = (DP,)", 2

where P,, = B},B,, isa projection map to the KL basis. The number of modes m defines stability at
the cost of resolution; smaller m results in lower noise amplification while producing a reconstruc-
tion with fewer modal basis functions (less detailed reconstruction). An optimal m balances the error
produced by these two effects.

We use the leaky integrator as a baseline AO controller to which PO4AO is compared. At a
given time step 7, the WES measures the residual wavefront. The leaky integrator then obtains
the new control voltages ¥, from

ﬁt = lﬁt—l + ngAW[, (3)

where g is the integrator gain, typically fixed below a value of about 0.5 for a two-step delay
system.** The DM saturation can cause a build-up of modes outside the control radius. Hence,
introducing a leakage [/ typically chosen near one, e.g., 0.99, in the DM commands commonly
used to remove those unseen modes and increase robustness.

4 Adaptive Optics as a Markov Decision Process

In this paper, we model AO control loop as a Markov decision process (MDP),* which is the de
facto mathematical framework for sequential decision problems in RL. In AO control, instead of
the full state of the system (exact DM shape, the full atmosphere profile, etc.), we only observe
WES data Aw, that represents only a partial information of the whole system.'? These kinds of
processes are referred to as partially observed MDPs in the RL literature, and, in theory, optimal
decisions (control) should consider all the past measurements observed (from the beginning of
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operation). However, we expand the state space to include a history of WFS measurement and
DM control voltages to guarantee approximately Markovian statistics and treat the process as an
ordinary MDP, where optimal decisions can be taken directly from the previous state formulation
(in our case a concatenation of past measurement and actions).'!!23%41

Let us first identify an action a, as the applied differential voltage satisfying

vV, =10, +a, “)

where [ is the leakage factor.
We now define the state s, of the MDP as

$: = (01,011, .. .,0 4,81, 5, . ..,0,_), (5)

where o, = C,,Aw, is the wavefront measurement projected to DM space and k the number of
history frames used in state formulation. Hence, we assume that there exist Markovian transition
dynamics p(s,,a,) = s,,, where the only new element of s, is the next observation o, . This
transition model contains information on the time delay (i.e., which action affects which observa-
tion), misregistration and non-linearity errors (how actions are related to measurements), and atmos-
pheric turbulence (how past information can be interpolated in the future). Further, in the following
formulation of the control algorithm,” the initial reconstruction matrix C,, serves as preprocessing to
observation and does not connect measurement to action directly (like in integrator control).

As the reward function of the MDP, we consider the negative Euclidian norm of the residual
wavefront observed through the WFS with a regularization term that favors small actions, i.e.

Folsesir-a) = =[log|* — alla|, (©)

where o, ; is the first element of s, . The addition of the regularization term a||a, ||* effectively
regularizes the control algorithm, making it less prone to saturation and oscillation, especially
early in the training procedure.

5 Model-Based Policy Optimization

The key idea of PO4AO (for details, see Nousiainen et al. 1y is to learn a non-linear control law
that maps past telemetry to new DM commands from data collected from the AO loop and
maximizes the reward. In RL terminology, this control law is referred to as the policy and will
be formulated as a mapping from the current state s, to the next action a,. Hence, the policy
combines the reconstruction and control steps in AO (e.g., a least-squares modal reconstruction
followed by integrator control).

In this work, the policy is constructed as a NN, and its parameters are derived indirectly via
model-based policy optimization. More precisely, the method collects data to learn a dynamics
model that is also represented by an NN and can be used to predict the subsequent state given the
current state and an action. The dynamics model is then used to optimize the policy. Both NNs
are fully convolutional NN (CNN) with three layers, see Fig. 1

The method first runs the so-called warm-up phase, where an initial data set is collected by
injecting random control signals into the control system, followed by training the involved NN
models. The warm-up phase aims to ensure rough estimates of policy and dynamic NN and,
consequently, stabilize the training procedure in the beginning. After the warm-up phase, the
method iterates the following three phases, from which phase one (1) is run in parallel to phases
two (2) and three (3).

1. Running the policy: the method collects data by running the policy in the AO control loop
for T timesteps (a single episode).

2. Improving the dynamics model: the dynamics model parameters are optimized via a
supervised learning objective.

3. Improving the policy: the policy parameters are optimized by utilizing the dynamics
model.

Let us now describe the PO4AO algorithm in more detail. The dynamics model
Do (8;,a;) — s, parametrized by w is expressed as an ensemble, i.e., a collection of determin-
istic CNNs, where w represents the weights and biases of the networks. Moreover, the policy
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Fig. 1 NN architectures. Both NN, the dynamics, and policy take input tensor concatenations of
past actions and observations. They also share the same fully convolutional structure in the first
three layers. At the output layer, the policy model includes the KL-filtering scheme (upper right
corner), and the dynamics model output is multiplied with the WFS mask (lower right corner).
For the GHOST, the input and output images are 24 x 24 pixels (set by the DM).

mapping g s, — a, parametrized by 6 is constructed as a fully CNN followed by a modal filter
layer, i.e.

my(s;) = Py Fo(s,), @)

where P, is the projection map, and Fy is a fully CNN, where the output is vectorized, and
6 represents the weights and biases of the CNN.

In step 1, telemetry (tuples of (s;,a,,s,,;) saved into a dataset D) is collected by operating
the AO control loop with the current (or initial) parametrization of the policy. In practice, PO4AO
utilizes two datasets: one for the data collected during the warm-up and one for the most recent
data (see details in Sec. 6).

Utilizing this data, in step 2, the dynamics model is trained, i.e., the parametrization is opti-
mized by minimizing the squared difference between the true next states and the predictions
according to

D s = balsia)l> =D llory =602, ®)
D D

where 0, is obtained from the state s,,; and 0,,, is the observation predicted by p,,(s;,a;).
The parameters are optimized by the Adam algorithm.*®

The objective of step 3 is to find policy parameters € that maximize the expected reward
within some pre-defined time horizon H given the dynamics of the environment (in our case,
the approximate model p,), that is

H
arg max » > 7, (8, 7(5,)). ©)

where H is so-called planning horizon and
Si=s and S, = P, (5, 7m(5,)).

In practice, this is done by sampling from previously observed data points, computing the
actions, and using the dynamics model to simulate the future. Moreover, we use the differenti-
ability of the reward and backpropagate through the models.

We give separate pseudo codes for the warm-up phase and the two parallel processes, which
are step one (1), i.e., running the policy, and steps two (2) and three (2), i.e., improving the
dynamics model and improving the policy. Algorithms 1, 2, and 3 give a full pseudo-code for
the procedures.
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Algorithm 1 PO4AO warm up

1: Initialize policy and dynamics model parameters 8 and o randomly

2: |Initialize gradient iteration length K, batch size B < |D| and planning horizon H
3: for number of warm-up episodes do

4: for frame t to T do

5: control with noisy integrator, i.e., a; = gAv; + ox, where x is Gaussian random noise and full
command v; = Iv,_y + a;. Record data {s;,+,s;,a;} and append to D

6: end for

7: reduce o

8: end for

9: Fit dynamics by minimizing Eq. (8) w.r.t @ using Adam
10: Fit policy by maximizing Eq. (9)

11: Start parallel processes described in Algorithms 2 and 3.

Algorithm 2 PO4AO control thread

—_

while observing do

2: for frame t to T do

3: wait for camera readout

4: run policy a; = ry(a;|s;), and send a; to DM
5: record data {s;,+,s;,a;} append to D

6: end for

N

end while

6 PO4AO Implementation and Hyperparameters

PO4AO has a lot of free adjustable parameters; see Table 1. The subsections below discuss the
specific choices and how they affect the method’s performance. We arrange hyperparameters
under four different subcategories.

6.1 Reinforcement Learning Parameters

These parameters set the frequency on which the policy NN is updated. The episode length (7 in
the pseudo codes) is the number of frames in an episode; for example, 500 frames on GPU-based
high-order adaptive optics testbench (GHOST) running at 350 Hz is 1.4 s. A single training
procedure is run during the episode (i.e., the dynamics and the policy optimization). After each
episode, the policy is updated with the newly updated model. The episode length determines the
maximum speed at which PO4AO can adapt to changing conditions.

The warm-up length determines how many episodes are run in the warm-up phase. For
example, if the warm-up length is 20, the first 20 episodes are run with the noisy integrator.
The Initial warm-up noise sets the maximum noise variance for the added noise component,
and the Minimum warm-up noise sets the minimum. The noise is reduced linearly during the
warm-up — starting from maximum and finishing at minimum. The training procedure is started
after the warm-up phase. The noise levels should be adjusted considering the dynamic range of
the DM and WEFS. Initially, the control should be really noisy, but we should not saturate the
mirror too much. We use 1% of the full range of the DM. The control should be close to
the integrator performance level in the latest warm-up episodes. The progressive reduction of
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Algorithm 3 PO4AOQ training thread

—_

Initialize gradient iteration length K, batch size B < |D| and planning horizon H
2: while observing do
3: Fit dynamics by minimizing Eq. (8) w.r.t @ using Adam

4: for iteration k = 1 to K do

5: Sample a mini-batch of B < |D| states {s,} from D
6: for each s, in the mini batch do

7: Set§] =s,

8: fort=1to Hdo

9: Predict a; = my(s;)

10: Predict s;.1 = p,,(S;, a;)

11: Calculate R; = ,,(s;,a;)

12: end for

13: end for

14: Update 6 by taking a gradient step according to V, ng’ R; with Adam.
15: end for

16: end while

the injected noise amplitudes in the warmup data covers a wide range of actions and states of the
system, which is crucial knowledge for PO4AO to avoid instabilities when occasionally facing
large wave-front residuals.

The loss function penalty parameter a defines the amount of regularization in the reward
function Eq. (6). The default value a = 0.1 provided enough regularization without affecting the
performance.

6.2 Training Parameters

These parameters set the number of gradient steps in dynamics and policy optimization. After the
warm-up phase, the loop is suspended, and the first training procedure is run on the data obtained
for the warm-up. The parameter iterations after warm-up sets the number of gradient steps/
iterations in this first training procedure. The suspension of the loop could be avoided by doing
the warm-up training in parallel to warm-up control. However, suspension offers more flexible
implementation for testing required warm-up training time, and the warm-up phase is usually
avoided using a pre-trained model.

After the first training iteration, the loop is closed with policy, and the parallel training pro-
cedure is started. Parameters iterations during the episode dynamics and—policy parameters set
the number of gradient steps on the parallel training thread. The latter parameters should be set so
that the training procedure finishes during a single episode; for example, with an episode length
of 1.4 s, the training procedure should take a maximum of 1.4 s. A good rule is to train the
dynamics model more than the policy.

The mini batch size is the number of data points used to calculate a single gradient step.
These data points are randomly sampled from the dataset (i.e., replay buffer or warm-up buffer).

6.3 Markov Decision Process Parameters

The MDP formulation outlined in Sec. 4 is specified by the parameters under the category MDP
parameters. The number of history frames, k, decides the number of past measurements in the MDP
formulation—the policy (controller) does not remember events outside this horizon. Consequently,
periodic disturbances occurring at a rate longer than the history horizon are hard to predict.
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Table 1 Table of adjustable PO4AO parameters. The values here were used
during the experiments in the results section, and they are a good starting
point for tuning the method into new instruments.

RL parameters

Parameter Value Units

Episode length 500 Frames
Warm-up episodes 20 Episodes

Initial warm-up noise 2 % of the maximum stroke
Minimum warm-up noise 1 % of the maximum stroke
Reward penalty () 0.1 —

Training parameters

Parameter Value Units

Iterations after warm-up dynamics 300 Gradient steps
lterations after warm-up policy (K) 150 Gradient steps
Iterations during episode dynamics 30 Gradient steps
Iterations during episode policy (K) 15 Gradient steps
Mini batch size in training (B) 32 Data samples

MDP parameters

Number of history frames 32 Frames

Planning horizon 4 Frames

Replay buffers

Replay buffer size 20 Episodes
Warm-up buffer size 20 Episodes
Train warm-up percent 20 Percent (%)

Compared to a short history, the long history horizon has advantages. First, it considers more
measurements and can effectively average the measurement noise. Second, a long history enables
the method to predict low-order vibration. On the other hand, longer history increases the computa-
tional burden and hampers the training (the bigger the input, the more free parameters to train).

The choice of the number of history frames is not trivial and should be tuned according to the
properties of the instrument. In Sec. 7.5, we run an experiment with different history lengths and
compare the results.

The planning horizon, H, sets the future time window considered by the PO4AO (see
Sec. 5). The loop latency drives the choice of this parameter, that is, the time delay. A good
and stable choice of these parameters is typically 1 to 2 frames longer than the expected time
delay of the system (see detailed discussion in Ref. 11).

6.4 Replay Buffers

PO4AO includes two buffers for saving data: the warm-up and replay buffer. The warm-up buffer
saves the data recorded during the warm-up phase and stays the same after the warm-up phase.
The warm-up buffer size is usually set to the length of the warm-up phase, that is, in our case,
20 episodes (10,000 frames). The newest data is added to the replay buffer, which keeps the latest
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replay buffer size episodes in memory. The mini-batch sampled during the training is sampled
from the warm-up buffer with the probability set by the train warm-up percentage and otherwise
from the replay buffer. The warmup buffer data with the relatively large Gaussian noise added to
the actions are needed to remind the policy of “bad” actions. Suppose the models are only trained
with recent data. In that case, PO4AO will eventually forget about the actions outside the good
control regime and, consequently, start to explore the region’s bad actions again, leading to bad
performance. We note here that the data in the bad region does not need to be very accurate—the
PO4AO only has to remember that the good rewards are observed when the loop is behaving
well.

The length of the replay buffer also affects the method’s ability to adapt to changing
conditions. A short replay buffer will react to changes in condition quickly but is prone to over-
fitting as the method trains on shorter data sequences. For our system and testing, a replay buffer
length of 20 episodes was a good compromise between the two effects.

7 Experiments

Here, we present the results of several experiments performed with PO4AO on GHOST to
explore its performance for high-level conditions relevant to operational on-sky AO. Specifically,
we explore

1. The impact of the temporal delay on the performance by adding artificial extra delay
(unknown to PO4AO) to the control loop.

2. The robustness and performance for low S/N
3. The ability to cope with misregistration

4. The effect of the history length (number of history frames in MDP parameters, Table 1) on
performance.

In all experiments, the PO4AO is compared against an integrator whose gain is adjusted
to minimize WFS residuals in all cases separately. Most other parameters listed in Table 1
(RL, training, replay buffers, and NN models) were kept constant. First, we introduce our lab
setup in Secs. 7.1 and 7.2, then the individual experiments.

7.1 GPU-Based High-Order Adaptive Optics Testbench

The GHOST laboratory AO system*” has been built to evaluate new AO control techniques,
specifically predictive control, for the ELT planetary camera and spectrograph. Located at
the ESO headquarters in Garching, Germany, the GHOST utilizes a simple single-source
(single-mode fiber-coupled 770 nm SLED) on-axis setup equipped with a pyramid WFS and
a Boston micromachines deformable mirror (DM-492). A programmable spatial light modu-
lator (SLM, Meadowlark HSP1920-600-1300-HSP8) introduces turbulence with high spatial
resolution.

The GHOST also splits the beam before the WFS to provide a “science channel” with
a classical Lyot coronagraph (4 A/D diameter mask and a circular Lyot stop undersized to
85%) and a CMOS camera Basler ACA2040-90 ym) with a sampling of ~3 pixel/1/D.
Figure 2 shows the coronagraphic PSF limited by the bench aberrations (left), and the long-
exposure coronagraphic PSF during replay of the numerically simulated first stage residuals
by the SLM (right). The grid of satellite spots is produced by the actuator structure of the
DM-492. The brightest of these spots is about 8¢~ of the intensity of the central PSF with the
Lyot mask removed.

The real-time control (RTC) is built using commercial off-the-shelf server components and
two Nvidia RTX Titan Graphics processing units (GPU)s. As the software solution, the GHOST
makes use of the COSMIC RTC.*® The COSMIC RTC is a platform developed for AO real-time
control (AO RTC) and proposed for several future AO instruments.

The GHOST simulates a two-stage XAO system closely resembling the VLT/SPHERE+
setup. The initial control phase is conducted via simulation, utilizing a pyramid or SH-WFS
(40 x 40 grid), effectively overseeing 800 modes. The atmosphere in the numeric simulation
is sampled at twice the rate of the control loop. The residual wavefront error is subsequently
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Fig. 2 GHOST coronagraphic PSFs. (a) The PSF without any turbulence, and the DM set to be
flat. (b) The PSF with simulated 1-stage systems residual phase screens played on SLM, and a flat
DM. The speckle at around 1 o’clock is a ghost in the system.

captured and applied to the setup via an SLM. The second stage control utilizes the actual hard-
ware, a pyramid wavefront sensor coupled with the DM controlling 300 to 400 modes, at the
SLM frequency (the second stage runs effectively twice the first stage frequency). We operate the
SLM and DM at the maximum (stable) frequency of the SLM, 350 Hz, in all experiments.

7.1.1 Implementation to GHOST and interfacing to COSMIC pipeline

The Python script that runs the PO4AO is composed of two threads. One thread (called the
control thread) controls the system with the trained policy NN by reading and writing to the
shared memory buffers. The other thread (called the training thread) constantly trains the models,
i.e., optimizes the dynamics and policy model parameters by running lines 6 to 17 in the
Algorithm 3. Once a single episode is run, the newly updated policy parameters are imported
to the control thread.

The PO4AO algorithm interfaces to the COSMIC pipeline through a shared memory buffer,
see Fig. 3. The COSMIC pipeline reads the raw WFS images, preprocesses them to slopes, and
adds the reference slopes; then, it multiplies the slopes with the reconstruction matrix, writes the
resulting delta voltages to the shared memory buffer, and suspends the loop. The Python script
reads the delta voltages from the shared memory and passes the data to PO4AO. The PO4AO
keeps past residual voltages and actions applied in memory. The memory of past delta voltages
and actions and the new delta voltages are passed to policy NN that outputs a two-dimensional
image of voltages, the action, which is then written to DM command buffer where COSMIC
catches them. The control thread also saves the observed delta voltages and actions fed (the
orange boxes in the figure) to the replay buffers for the training.

7.2 Simulation Set-Up

To simulate a faster second-stage system using GHOST, we followed these steps. Firstly,
we generated the residual phase screens numerically for the lab setup by using the Object-
Oriented Python and AO simulation tool.*” We simulated an 8-m telescope with a 41x41
DM and a PWEFS, observing a natural guide star of magnitude 6.16. The time delay of
the first stage was set to two frames. The atmospheric turbulence was a combination of nine
frozen flow layers with Von Karman power spectra, with a Fried parameter of 15 cm at 550 nm
wavelength. The simulation parameters can be found in Table 2. We controlled the simulated
system using an integrator and recorded the residual turbulence after DM correction. This exact
set of residual turbulence phase-screens is then replayed by the SLM for all our GHOST
experiments.
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Table 2 Simulations parameters. For full wind profiles of the simulated atmosphere, see the
GitHub repository.

Numerically simulated first-stage

Parameter Value Units
Telescope diameter 8 m
Obstruction ratio 0 Percent
Sampling frequency (atm) 2000 Hz
AO loop frequency (DM) 1000 Hz
NGS magnitude 6.16 —
WFS wavelength 0.79 um
Actuators 41 Across the pupil
PWFS modulation 3 A/D
KL modes 900 Modes
Integrator gain 0.5 —

GHOST (second-stage)

Parameter Value Units

Sampling frequency (simulation) 2000 Hz

Sampling frequency (real-time) 350 Hz

Actuators 24 Across the pupil

PWFS modulation 4 A/D

WFS and Science Cam wavelength 770 nm

Light source 6 and 187 10° camera counts/ WFS frame

Atmosphere parameters

Fried parameter 15 cm @ 500 nm
Number of layers 9 —
Effective wind speeds 34 m/s
Lo (M) 30 m

7.3 Time Delay Experiment

The AO system delay budget encompasses various factors that contribute to the overall delay.
Initially, a minimum 1-frame delay cannot be avoided due to two primary sources: 0.5 frames
result from frame integrations performed by the WFS camera, and another 0.5 frames arise from
the sample and hold operations carried out by the DM. This 1-frame delay is a fundamental
limitation and is encountered in systems such as GHOST as well.

When operating GHOST at a frame rate of 350 Hz, each frame corresponds to a duration of
2.86 milliseconds (ms). The camera readout time for a subwindow, which is ~70 ms (us), along
with the time taken by the COSMIC pipeline (ranging from 100 to 150 us) and Python control
(ranging from 600 to 800 us, discussed in Sec. 7.7) and the rapid settling of the DM (less than
2 us), are all relatively insignificant compared to the frame duration. Consequently, the total
delay experienced is primarily comprised of the unavoidable 1-frame delay, along with additional
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0.3 frames for the remaining processes, resulting in a delay of around 1.3 frames. Therefore,
an extra frame should be added to the GHOST system to replicate the scenario encountered in
systems like SPHERE.

When the SPHERE camera operates at its maximum frame rate, determined by the camera
readout time (around 1380 Hz), an additional full frame delay is incurred, bringing the total delay
to 2 frames. Additionally, smaller overheads such as real-time control (RTC) computation,
communication, and DM settling contribute to the overall delay, typically amounting to a few
hundred microseconds. When all these factors are combined, the total delay experienced by the
SPHERE system reaches ~2.4 frames.’® However, if the system is run at a slower speed where
the readout time is less than one frame, the total delay is reduced accordingly.

To study the method’s predictive ability and demonstrate its ability to adapt to unknown time
delays, we did the following test: we ran PO4AO (with the same hyperparameters) on three
different temporal delays. We control these delays by adding an external buffer that suspends
the DM commands for a given number of frames on the second stage only. First with zero frames
of additional delay, second with one extra manually added frame of delay, and then with two (2)
frames of additional delay. All test runs are compared against an integrator, which is separately
tuned for all delays to give the best performance (lowest WFS residual variance).

We compare the performance of PO4AO and the integrator in two ways: by comparing the
reward, that is, the residual variance of the WFS measurements, and then by comparing the
science camera images. The light source is set relatively bright, resulting in around 187k camera
counts/frame with a standard deviation of 214. Figure 4 plots the learning curves, the cumulative
wavefront residual variance (i.e., negative reward), after each episode during the run. The first
20 episodes are the warm-up phase, where the integrator controls the system with added
Gaussian noise on the control signal; after each warm-up episode, the noise is reduced linearly.
For time delays, PO4AO outperforms the integrator after the warm-up of 20 episodes (10,000
frames), and the performance converges at around 80 episodes (40,000 frames). Converged
PO4AO provides around a factor of three improvement in reconstructed wavefront variance
for all delays.

Figure 5 shows the long exposure (8 s) science camera images of the integrator and
converged PO4AO after the first 80 episodes. Figure 6 plots the related azimuthal average over
intensities of the images, that is, the contrast. Along with the PO4AO and the integrator results,
we plot the contrast without turbulence which is limited by the bench non-common path
aberrations. We also plot the open-loop PSF contrast, where the SLM replays the numerically
simulated first stage residuals. We observe a factor of 1.5 to 3 improvement in contrast
(depending on angular separation and time delay).
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Fig. 3 PO4AOQ interface for RTC pipeline. COSMIC pipeline preprocesses the raw WFS data,
projects it to DM-space with command matrix (using the modal basis matrices: S2M and V2M),
then writes the “delta volts” to the shared memory buffer, and suspends the loop. Python interface
(the green box) reads the shared memory buffer and passes the data to the PO4AO implemen-
tation. The PO4AO calculates the next command and saves the data (orange boxes), and the
Python interface writes the command to shared memory, where COSMIC registers the command
and passes it to the saturation management algorithm (SMA)/clipping stage.
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Fig. 4 Learning curves for time delay experiments. The red lines correspond to the performance of
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the PO4AO outperforms the integrator all ready after the warm-up period. The training is done

parallel to control, so the 10 episodes correspond to ~14 s in the figure.
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Fig. 5 PSFs on different additional control delays. The top row is for the integrator control, and
the bottom is for PO4AO. The PO4AOQ and its hyper-parameters are exactly the same for all time
delays - the time delay is learned from the interaction.

7.4 Low Flux Experiment

In this experiment, we study the performance of PO4AO under low flux. In the time-delay experi-
ment, the internal light source was set relatively bright, resulting in a flux of 187,000 camera
counts/frame. For the low flux experiment, we set the light source such that the flux was around
6000 camera counts/frame, while the detector noise was around 3000 camera counts/frame(S/N
~2). Further, we fixed the additional control delay to 1 frame, resulting in a typical overall delay
of slightly over two frames, and ran the algorithm for 140 episodes, including the warm-up.
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Fig. 6 The contrast with different time delays. The blue lines correspond to the azimuthal average
of integrator images, and the red lines are the same for PO4AO. The line style indicates the length
of the time delay. The solid black line is for flat DM, and the dashed black line is for flat DM (open
loop) with first-stage residuals played on SLM. Note that around 11 1/D is the correction area of
the DM-492, and around 18 1/D is the correction area of the numerically simulated first-stage DM.
PO4AO0 provides better contrast inside the second-stage control radius for all time delays.

Again, we record cumulative loss (negative reward) after each episode (Fig. 7) and the science
camera PSF after 80 episodes (Fig. 8). The cumulative loss here is dominated by photon and
sensor noise; hence, we plotted the cumulative reward when turbulence is not played. It repre-
sents the absolute lower limit for the performance. Figure 8 shows that PO4AO considerably
reduces the photon flux inside the control radius. Consequently, PO4AO enables the imaging
of fainter objects.

7.5 Vibration Reduction and Effect of MDP Formulation

This section studies the effect of the number of past telemetry frames (observations + actions) in
the MDP formulation. We set the control delay to one extra frame and ran the same test but now
with different history lengths. We note here that this test was run with a slower simulated wind
profile (effective wind speed 26 m/s; the experiment could not be repeated with the original
wind profile due to malfunctioning SLM); hence the lower rewards. Figure 9 shows the corre-
sponding episode cumulative losses after the warm-up phase for different history lengths. As a
general trend, the PO4AO corrections performance improves with the number of history frames
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Fig. 7 Learning curve for the low flux experiment. The blue line is the cumulative reward after each
episode for the integrator, and the red line is for PO4AQ. The dashed green line is the reward after
each episode when the turbulence was not played and the loop opened.
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Fig. 9 Learning curves for different history lengths. We plot the cumulative reward after each
episode for all history lengths after the warm-up phase. All history lengths have the same
warm-up phase (not included in the plot). The longer the time length is, the better the performance.

considered. To better understand the increased predictive power with the number of frames,
Fig. 10 shows the temporal power spectral densities of the mode #1 for the history length of
128 frames, history length of 4 frames, and the integrator. The mode #1 is tip mode in the direc-
tion of the dominant wind (the ground layer).

We observe that the PSD increases towards the Nyquist limit because of the intersampling
signal of the first stage.’ The 1st stage is numerically simulated with a frame rate that is half the
one in the second stage; the 1st stage DM is only updated every second frame of the simulation.
Hence, the location of the intersampling signal matches the Nyquist frequency of the second
stage and creates this particular shape of the PSD.

Compared to the integrator, PO4AO dampens the residuals at mid-frequencies. However,
like for linear controllers, we observe the Bode theorem-like behavior (waterbed effect);
we observe amplification at higher frequencies. Some low-frequency residuals are transmitted
through the leak.

In addition, we observed a vibration spike at 16 Hz. The spike is equally strong for the
integrator and PO4AO with four history frames, but the PO4AO with 128 history frames damp-
ens the spike. Also, PO4AO with 32 and 64 could dampen the spike to some extent but not all the
way as the PO4AO with 128 history frames.
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Fig. 10 Temporal PSD of mode #1 (tip) on different history lengths.

7.6 Misregistration Experiment

Finally, we ran an experiment to confirm the method’s robustness for misregistration. We start
with a pre-trained PO4AO and well-tuned integrator. The system is calibrated, the PO4AO is
trained, and the integrator is tuned as before with no misregistration. Then we close the loop
and start to introduce various degrees of misregistration. We introduce misregistration by shifting
the DM off-axis manually while the loop is closed.

The whole experiment lasts 320 episodes. The first 80 episodes are run with no misregis-
tration. We then shift the DM by 40 micrometers (#m) and let it run for 80 episodes; then at ~160
episodes, we shift the DM an additional 40 gm (combining 80 xm), and finally, at 240 episodes,
we shift the mirror by 40 ym (combing 120 um) and let it run 80 episodes. The DM actuator
spacing is 300 ym, meaning that 120 um corresponds to a 40% shift. We repeat the same experi-
ment with a well-tuned integrator. Finally, for reference, we re-calibrated (new interaction matrix
and tuned gain) the system at 120 ym of misregistration and ran a well-tuned integrator with
a re-calibrated reconstruction matrix (the number of modes is kept the same). The results of
this experiment are shown in Fig. 11. PO4AO is able to obtain stability and performance with
dynamic misregistration while the integrator gets unstable. However, we observed PO4AO some
instability when we first moved the mirror (see the spike around episode (76)), but PO4AO
automatically recovered from this. PO4AO also outperforms the re-calibrated integrator by
a large margin.

7.7 Performance on RTC

This section discusses the latency introduced by the method. The total delay budget of the
COSMIC pipeline is discussed previously in Sec. 7.3 and results in ~150 us (preprocessing
of WFS data, projection to voltages, and clipping stage). In addition, there is a delay coming
from the method’s Python implementation. This includes all latency starting from when
COSMIC writes the residual volts to the shared memory to the point when the Python interface
writes a set of new commands to the shared memory, and the loop resumes.

More precisely, this latency is composed of the shared memory modification, the time
required for converting vectors to images, and vice versa, as CNNs typically process images
as input. Furthermore, the process of data collection adds to the overall delay, along with the
delay caused by the update of the state memory of past telemetry frames. Finally, the delay
budget also accounts for the time the policy NN takes for its forward pass, which is essential
for control decisions and accounts for the majority of the total latency. Table 3 shows the latency
of different components for the most common CNN (32 history steps) used in the experiment.
Collectively, these factors contribute to the total latency experienced in the system’s operation.
Table 3 shows that the most significant amount of time (500 us) is spent on the CNN forward
pass. Saving data and updating the state information combines around 180 us. The remaining
~200 us is spent on image-to-vector modifications.
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Fig. 11 The misregistration experiment. Here, we plot the cumulative loss over an episode during
the misregistration experiment. The blue line is the well-tuned integrator calibrated with centered
DM, and the green line is the well-tuned integrator calibrated with DM 120 microns off-axis. The red
line is the PO4AO calibrated and pre-trained with centered DM. The dashed black lines indicate the
moment when DM was manually shifted. Since the shifting was done manually, the gray areas
around the line indicate the uncertainty of the exact moment.

Table 3 Latency terms of control thread.

Inference speed

CNN inference and jitter Saving data Update of the state

CNN (32 history) 532.86 + —8 us 52.63 us 128.38 us

We further examine the latency by recording the end-to-end latency of CNN with different
history lengths and PO4AO in the integrator mode (integrator running through the Python inter-
face). By end-to-end latency, we mean the time from the WFS image arriving to the time the
command is sent to the DM. Further, we measure the speed of the training procedure for each
case given the training parameter (see Table 2). The training parameters were chosen such that the
training procedure fit inside a single episode for each history length. These results are shown in
Table 4. The integrator is around 500 us (time of single CNN forward pass) faster, as expected.
The longer state history does not affect the overall loop latency. The longer state history only
includes more convolutional filters (in the first layers). Hence, these introduce mostly parallel

Table 4 Total latency of Python implementation.

Total latency

Past frames (k and m)  Total latency (us)  Jitter std.  Tr. time/episode

Integrator — 724 85 —

CNN 4 1205 60 0.78 s
CNN 8 1230 77 0.79 s
CNN 16 1208 57 0.80 s
CNN 32 1218 73 0.81s
CNN 64 1219 73 091s
CNN 128 1196 60 127 s
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operations, and the GPU we used has plenty of memory headroom for the shallow architectures
we used. However, the training time increases when more telemetry frames are added. This sets a
limit to the episode length. Consequently, PO4AO, with fewer history frames, can adapt faster to
misregistration and atmospheric wind conditions.

8 Conclusion and Discussion

To conclude, this paper demonstrates that PO4AO is a robust controller for a second-stage AO
system in a lab simulation. RL is shown to mitigate several critical error terms in XAO control,
such as misregistration, photon noise, and temporal error. Moreover, running PO4AO is a turnkey
operation as the hyperparameters are tuned only when the method is implemented, and the
method adapts automatically to changing conditions like noise level, misregistration, and wind
profile. Extensive experiments on GHOST confirm that PO4AO can adapt to and mitigate these
error terms on real hardware. In addition, we showed that PO4AO could also mitigate vibrations
if it considers enough past telemetry frames.

However, like most deep RL methods, PO4AO is somewhat sensitive to the choice of hyper-
parameters. Tuning the parameters can take time, but the method performs robustly under all
conditions once a good combination of hyperparameters is found. The method did not improve
the system’s stability to more degrees of freedom. We observed that the integrator was stable to
~350 KL modes, and PO4AO did not enable us to control more KL. modes robustly.

Additionally, we open-sourced the Python implementation of PO4AO, which is well-
commented and can be easily adapted to numerical simulations or real hardware. The paper also
discusses the hyperparameters of PO4AO and how they affect the method. The open-source
implementation introduces an additional ~700 us to the pipeline latency, making it suitable for
systems running lower than 1000 Hz (depending on the pipeline latency) that can be tested
on-sky with this implementation. The implementation requires a minimum of two GPUs on the
RTC, one for inference and one for training. The memory bottleneck for bigger NN structures
(e.g., longer time length, more filters per layer, and more DoF in the input) is the training GPU
RAM,; the backpropagation requires the most GPU memory.

Various avenues exist to optimize the method further: First, critical code sections can be
re-implemented by transitioning to lower-level programming languages, such as C, to benefit
from direct memory access and optimized execution. Additionally, the NN could be implemented
with NVIDIA TensorRT, which is a high-performance inference optimizer that delivers low
latency and high throughput for deep learning inference applications. Second, optimizing
memory handling through techniques like circular buffers can enhance data storage and retrieval
efficiency, reducing computational load. Third, streamlining the pipeline to handle control
voltage images instead of vectors can improve data processing and efficiency. Furthermore,
the 500 us forward pass is slower than expected for the shallow architecture we used. Our
investigation indicates a CPU bottleneck somewhere. Once the code is optimized, we expect
significant gains in latency. These optimizations could provide latency gains that would support
loop speed up to a few kilohertz.

9 Appendix A: Implementation Details

This section discusses open-source Python implementation. The code consists of three Python
files: po4ao.py, po4ao_models.py, pod4ao_util.py, and podao_config.py. The podao.py script
includes the main function that starts the warm-up phase and training procedure and closes
the loop. The file includes the step-function that interfaces the Python code to the RTC pipeline.
The PO4AO algorithm interfaces to the COSMIC pipeline through a so-called step-function. The
step function can be found in the po4ao.py file. The step function is pipeline-specific and should
be replaced if the method is adapted to different RTC pipelines or numeric simulations. The
po4ao.py file also includes functions for the training thread, control thread, and warm-up phase.
The file po4ao_models.py contains the NN models: the policy and the dynamics, and file
po4ao_util.py includes utility functions, such as the implementation for replay buffers and shared
memory optimizers for training. The configuration file po4ao_config.py includes all adjustable
hyperparameters of the method.
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The file po4ao_config.py contains few parameters beyond the PO4AO parameters discussed
in Sec. 6. In the following, give a short explanation of them.

9.1 A.1 Parameters Under Subcategory the Integrator

If the parameter integrator is set to True, the PO4AO runs in integrator mode, where data is
collected, and models are trained, but the control thread runs on integrator control. These param-
eters define the internal integrator controller of POAO and affect the PO4AO itself. The gain
value gives the gain of the integrator during either the warm-up phase or in the integrator mode.
The “leakages” and “number of modes” set the leakages and the DoF of the internal integrator
and PO4AO. The number of modes should be set to a value where the integrator is stable on
a reasonable gain value.

9.2 A.2 Parameters Under Subcategory the Neural Network Models

The NN parameters are for the architecture of the Policy and the dynamics NNs. The models are
generic three-layer fully CNN without any up- or down-sampling and share the same architecture
excluding the output layer.'! The CNN filters/layer sets the number of convolutional filters on
layers. Different NNs architectures can be easily implemented in the code by replacing the
models in the po4ao_models.py- file.

9.3 A.3 Other Parameters

The control delay parameter (under the category “MDP parameters” in the code) sets the
additional control delay. It decides how many frames a control signal is suspended on top of
the natural loop latency. It is only for testing the behavior of PO4AO on different time delays.
Obviously, for a real system, it is set to zero for optimized performance.

Code and Data Availability

The codes used in this paper are available on GitHub repository [https://github.com/jnousi/PO4AO
.git]. The code is documented and annotated to help readers understand the methodology and
reproduce the results.
We encourage readers to use the data and codes for their own research and to cite this paper as
the source of the data. If you have any questions about the data or the codes, please do not
hesitate to contact us.
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