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Abstract

Significance: Placenta is an essential organ for fetal development and successful reproduction.
Placental insufficiency can lead to fetal hypoxia and, in extreme cases anoxia, leading to fetal
death. Of the 145 million deliveries per year worldwide, ∼15 million neonates are small for
gestational age and, therefore, at risk for antepartum and intrapartum hypoxia. Clinical methods
to assess placental function largely rely on the assessment of fetal heart rate changes but do not
assess placental oxygenation. Near-infrared spectroscopy (NIRS) allows non-invasive, real-time
assessment of tissue oxygenation in intact organs, which can be used to assess placental oxy-
genation. However, tissue optical properties can affect the accuracy of methods to measure tissue
oxygenation.

Aim: This study was performed to estimate the scattering coefficient of the human placenta. We
have computed the scattering coefficients of the human placenta for the range of 659 to 840 nm
using two methods of diffuse reflectance spectroscopy (DRS).

Approach:Measurements were performed using an in-house DRS device and a well-established
frequency-domain diffuse optical spectroscopic system (DOSI). Measurements were performed
in eight placentas obtained after cesarean deliveries. Placentas were perfused with normal saline
to minimize the effects of absorption due to blood. Three sites per placenta were measured.
Absorption and scattering coefficients were then calculated from the measured reflectance using
the random walk theory for DRS and frequency-domain algorithm for DOSI.

Results: Average reduced scattering coefficient (μs 0) was 0.943� 0.015 mm−1 at 760 nm and
0.831� 0.009 mm−1 at 840 nm, and a power function μs 0 ¼ 1.6619 ðλ∕500 nmÞ−1.426 was
derived for the human placental scattering coefficient.

Conclusion: We report for the first time the scattering coefficient of the human placenta. This
information can be used to assess baseline scattering and improve measurements of placental
oxygen saturation with NIRS.
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1 Introduction

The placenta is an essential organ for fetal development and successful pregnancy.1 The villous
tree of this organ provides an interface between the maternal and fetal circulations.1 The res-
piratory function of the placenta consists of providing oxygen from maternal blood to the fetus,
and carbon dioxide from the fetus into the maternal circulation.2 Other important functions of the
placenta include providing nutrients to maintain fetal growth, waste removal, endocrine, and
immunological functions.1

The term “placental insufficiency” is used in clinical obstetrics to refer to a state in which
the organ fails to deliver nutrients or oxygen, which may lead to fetal growth restriction or,
in extreme cases, death from anoxia.3–6 Most tests of placental function rely on indirect
parameters, such as the assessment of fetal growth, Doppler assessment of vascular impedance
in the maternal or fetal circulation, or the determination of placental products such as human
chorionic gonadotropin, human placental lactogen, placental-specific protein 13, or other
products manufactured by the organ.7 Given the importance of placental respiratory function
for fetal survival, a method to assess placental oxygenation in real time would be of consid-
erable importance in clinical medicine, and in the understanding of the pathophysiology of
pregnancy.

Tissue oxygenation can be measured in-vivo by calculating the tissue oxygenation index
(TOI). Blood oxygen saturation is now routinely used in clinical medicine to assess respiratory
function and is part of routine practice. The most common method to assess oxygenation is
using optical methodologies, which largely rely on diffuse reflectance spectroscopy (DRS).8–10

Typically, for this purpose, light in the near-infrared (NIR) range (700 to 900 nm) of wavelengths
is directed to a tissue in close proximity to the circulation. Given that NIR can penetrate tissue
without substantial attenuation by normal components, such as adipose tissue and water, light
can diffuse into the tissue from a source and backscattered light can be detected with optical
methods. The principle behind this technology consists of the detection of changes in the con-
centrations of oxyhemoglobin (HbO) and deoxyhemoglobin.

To reach the placenta in-vivo, the light needs to pass through the skin, adipose tissue, and
myometrium (uterus). In another study on 12 pregnant women in the third trimester, we found
the total thickness of these tissues ranged from 7.1 to 42.5 mm (unpublished data). Near-infrared
spectroscopy (NIRS) can probe depths of up to 30-mm below the skin surface. This was deter-
mined using Monte Carlo photon diffusion simulations of a three-layer tissue (skin, fat, and
muscle) using the hop-drop-spin method described by Steve Jacques (data not yet published).
Therefore, we propose that NIRS will be able to noninvasively probe the upper few millimeters
of the placenta in a pregnant woman with total maternal tissue thickness <30-mm and with the
placenta positioned in the anterior, fundal, and side of the uterus.

There have been very few studies on placental oxygenation.11–13 Matsuo et al.11 reported that
placental oxygenation is lower in preeclampsia, measured by the umbilical arterial-venous oxy-
gen difference. Hasegawa et al. used an NIRS device to perform transabdominal measurements
of placental TOI in pregnancies complicated with a small for gestational age fetus. They reported
higher placental TOI values for fetuses whose mothers had preeclampsia and placental abnor-
malities, whereas those with umbilical cord abnormalities showed a lower placental TOI
values.12 Moreover, the authors proposed that a high TOI represented a greater than normal
concentration of HbO, which resulted from a reduced oxygen exchange caused by placental
pathology in the intervillous space. Kakogawa et al.13 also reported that the NIRS probe can

Khare et al.: Evaluation of the human placenta optical scattering properties using continuous wave. . .

Journal of Biomedical Optics 116001-2 November 2020 • Vol. 25(11)

https://doi.org/10.1117/1.JBO.25.11.116001
https://doi.org/10.1117/1.JBO.25.11.116001
https://doi.org/10.1117/1.JBO.25.11.116001
https://doi.org/10.1117/1.JBO.25.11.116001
https://doi.org/10.1117/1.JBO.25.11.116001
https://doi.org/10.1117/1.JBO.25.11.116001


be utilized to assess placental oxygenation. However, these studies have not taken into account
sufficient information about the optical scattering of the placenta.

Because both scattering and absorption contribute to the light attenuation in the tissue and the
soft tissue is in general a highly scattering medium, incorporating scattering coefficient of pla-
cental tissue can improve the reliability of the assessment of tissue oxygenation. Currently, the
scattering coefficient of the human placental tissue is unknown. Herein, we report the effective/
reduced scattering coefficient (μs 0) in ex-vivo placental tissue samples.

2 Materials and Methods

2.1 Measurement Devices

We chose two devices to measure placental optical properties: (1) an in-house continuous-wave
(CW) system, featuring two wavelengths. This device records spatially resolved diffused reflec-
tance with source-detector (SD) separation from 7.4 to 54.4 mm and (2) a frequency-domain
diffuse optical spectroscopic system (DOSI) with a fixed SD separation of 28 mm.

2.1.1 Continuous-wave spatially diffuse reflectance spectroscopy

Figure 1 shows the in-house DRS device, which consists of a 16-element photodiode array
(S4111-16R with driver circuit C9004, Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka,
Japan) as a detector and three dual-wavelength NIR light-emitting diodes (LEDs; L760/840-
05A, Ushio Inc., Tokyo, Japan) as the light sources. The center-to-center distance between con-
secutive elements in the photodiode array is 1 mm. The LEDs emit light at 760 and 840 nm and
are placed at distances of 7.4, 23.4, and 39.4 mm from the first element of the photodiode array.
The system was custom-built for high-speed semi-automated data acquisition and storage. Data
were acquired with 10-bit resolution. A frame to hold the light sources and detector was 3D-
printed to make the assembly easy to handle. It was sealed with silicone glue to prevent moisture
from entering the device. The system can measure a diffuse reflectance profile with 1-mm spatial
resolution in the SD distance range from 7.4 to 54.4 mm. The LEDs were designed to emit light
at four different intensity levels, each measured with a power meter (S120C, Thorlabs, New
Jersey) to compensate for the LED-to-LED variations. The detection performance of all 16 pho-
todiode elements was measured. The differences among the elements were negligible and have
not been accounted for herein.

2.1.2 Frequency-domain diffuse optical spectroscopic system measurements

The frequency-domain system, also called the DOSI, is well-characterized and has been pre-
viously described.14,15 Measurements were performed using a hand-held probe with a fixed SD
distance of 28 mm. Amplitude-modulated near-infrared light at four wavelengths (659, 689, 781,
and 829 nm) were utilized for frequency-domain measurements; the broadband continuous wave
mode of the device was not enabled. The modulated frequency of DOSI ranges from 40 to
400 MHz, with a source power of all four wavelengths of 20 mW. The detector is an avalanche
photodiode with 1.5-mm diameter (Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka,

Fig. 1 DRS device built in-house for measurement of the optical properties of the placental tissue.
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Japan). Details of the system calibration and algorithms used in this system to measure absorp-
tion and reduced scattering coefficients have been reported.14–16

2.2 Placental Tissue Preparation

Eight normal placentas (gestational age: 37 to 41 weeks) were obtained from cesarean deliveries
with pregnancies without complication at Walter Reed Hospital (Bethesda, Maryland). The
maternal age was between 18 and 40 years old. This study excluded all placentas from mother
with major fetal congenital anomalies, maternal hypertension/hypertensive disorder, diagnosis of
intraamniotic infection, diagnosis of intrauterine growth restriction, maternal diabetes, hyperten-
sion, multiple gestation, and placental abnormalities. In addition, placentas that required patho-
logical analysis were excluded. The approximate thickness of the placental tissues was 25 mm.
All placentas were delivered to the laboratory within 30 min of the procedure. The whole
placentas were perfused with saline to remove the blood for accurate assessment of the reduced
scattering coefficient. The time-lapse between receiving the placenta and the onset of perfusion
was about 6 min. The umbilical vein was cannulated, and the placenta was perfused with a
phosphate-buffered saline 1× solution using a peristaltic pump at the flow rate of 100 ml∕min

for about 30 min. After perfusion of the fetal side, the maternal side was perfused for about 45 to
60 min by inserting thin Teflon tubes at multiple locations in the maternal lobes. The flow rate
from each tube was ∼10 ml∕min. The DRS device was utilized to measure optical properties at
multiple placental locations. This study was approved by the National Institutes of Health and
the Walter Reed National Military Medical Center (Bethesda, Maryland). Figure 2 shows the
maternal side of the placenta before and after perfusion, respectively.

2.3 Estimation of Reduced Scattering Coefficient (μs′) and Absorption
Coefficient (μa)

The random walk theory for diffusion of photons through an absorbing and scattering medium
has been previously described.17 For a semi-infinite medium, the probability that a photon is
diffusely reflected to the surface of the medium at a distance r from the source is given by
Eq. (1), and μa and μs 0 are the absorption and reduced scattering coefficients, respectively.
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The intensity of light detected at the surface depends on the photon flux that, in turn, depends
on the characteristics of the light source and detection efficiency. In our device, the intensity is
measured in terms of the photodiode count (range: 0 to 1023). As a result, the intensity values are
expressed in arbitrary units. To account for the source intensity, we calculated the intensity IðrÞ
at distance r from the source as

EQ-TARGET;temp:intralink-;e002;116;86IðrÞ ¼ αΓðrÞ: (2)

Fig. 2 Placental tissue (a) during perfusion of the maternal lobe. Removal of blood can be
observed in the lighter color of the lobe on the left, and (b) after perfusion of all maternal lobes.
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The constant α is the instrument calibration factor that corresponds to the source intensity. To
determine α, we employed a reference phantom made of Polydimethylsiloxane (PDMS), TiO2
powder, and India ink. The optical properties μa and μs 0 of this phantom were determined using a
well-characterized frequency-domain system (DOSI at Beckman laser institute, University of
California, Irvine in Irvine, California) and reconfirmed by a commercial time-domain system
(Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka, Japan), μa ¼ 0.0052� 0.0001 mm−1

and μs 0 ¼ 0.6914� 0.0083 mm−1 at 760 nm and μa ¼ 0.0036� 0.0001 mm−1 and μs 0 ¼
0.6148� 0.0095 mm−1 at 840 nm. These values were substituted in the random walk Eq. (1)
to obtain the probability of the diffuse reflectance ΓðrÞ. Next, the in-house DRS device was used
on the reference phantom to record the reflection profile IðrÞ at all possible SD distances r. From
Eq. (2), the instrument calibration factor α was calculated using the measured intensity values
and the derived ΓðrÞ values.

Equation (2), with the known α at 760 and 840 nm, was then applied to calculate the optical
properties using a least-square fit to the data measured by the DRS device. The least-square fitting
was performed utilizing theMatlab® software (TheMathWorks® Inc, Massachusetts) Curve Fitting
Tool (95% confidence bounds). The first 16 SD separations were included in our analysis as the
larger SD separation yielded insufficient intensities. This methodology was validated using three
phantoms, whose optical properties at four different wavelengths were provided by either the com-
pany (fNIR Devices LLC, New Orleans, Louisiana, 680, 750, 780, and 810 nm) or measured with
a DOSI system and was confirmed with the time domain system measurement. Since the provided
wavelengths were different with the wavelengths used in our DRS device, we could only compute
μs 0 (not μa) at 760 and 840 nm by a power function fitting (Table 1). The μs 0 values obtained using
the DRS devices have an average of 7.2% deviation from the provided/FD-measured values.

The above method was then applied to the DRS intensity data from the perfused placentas to
obtain their optical properties.

3 Results

3.1 Random Walk Theory Fitting

The diffuse reflectance profile was measured on the maternal side of the perfused placenta.
The small amount of blood that remains after perfusion within the tissue is expected to absorb
the photons without changing the optical scattering of the tissue significantly. Figure 3 shows
representative diffuse reflectance profiles measured utilizing the in-house DRS system on the
maternal side of a perfused placenta. The random walk model fits well to the DRS profiles. The
goodness of the fit was as follows: R2 ¼ 0.996 and RMSE ¼ 18.26 at 760 nm and R2 ¼ 0.997

and RMSE ¼ 8.135 at 840 nm. The instrument calibration factors, calculated as described in
Sec. 2.3, were 1140261 at 760 nm and 902105 at 840 nm.

3.2 Absorption and Reduced Scattering Coefficients Derived from the
CW DRS Device

For each placenta, the measurements and calculations were performed at three sites on the
maternal side with each region being measured three times. The reduced scattering (μs 0) and

Table 1 Scattering coefficients of the three phantoms used for validation.

Phantom name Source of μs 0 values

μs 0 at 760 nm (mm−1) μs 0 at 840 nm (mm−1)

Standard DRS Standard DRS

fNIR devices LLC Provided by the company 1.06 0.93 0.96 0.85

Acrin7 Measured using DOSI 0.66 0.70 0.57 0.60

Scrooge Measured using DOSI 0.91 0.88 0.82 0.78
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absorption (μa) coefficients of a placenta were then obtained by averaging data from nine mea-
surements for each placenta. Data from one of eight placentas were excluded because of the low
measured intensity. Reduced scattering (μs 0) and absorption (μa) coefficients of seven perfused
placental tissues are given in Table 2. The mean reduced scattering and absorption coefficients of
perfused placental tissue are μs 0 ¼ 0.943� 0.015 ðmm−1Þ and μa ¼ 0.012� 0.002 ðmm−1Þ at
760 nm and μs 0 ¼ 0.831� 0.009 ðmm−1Þ and μa ¼ 0.007� 0.001 ðmm−1Þ at 840 nm. The μs 0

values did not vary drastically despite the observed changes in the μa values (Table 2).

3.3 Reduced Scattering Coefficients Measured with the Frequency-Domain
System

The DOSI system provided optical property measurements at four wavelengths, hence it was
used to measure the reduced scattering coefficients of one of the placentas (placenta 1, Table 2)
and compared to the coefficients estimated with the DRS device. Figure 4 shows amplitude
and phase model fits to the measured data on placenta 1 using the DOSI system. The measure-
ment using the DOSI system yielded μs 0 ¼ 1.129� 0.025 mm−1 at 659 nm, μs 0 ¼ 1.050�
0.021 mm−1 at 686 nm, μs 0 ¼ 0.866� 0.019 mm−1 at 787 nm, and μs 0 ¼ 0.810� 0.015 mm−1

at 831 nm. A power function μ 0
s ¼ aðλ∕500 nmÞ−b was fitted to these reduced scattering coef-

ficients with a ¼ 1.6619 and b ¼ 1.426 with R2 ¼ 0.9978 (Fig. 5). The reduced scattering coef-
ficients at 760 and 840 nm were then derived as μs 0 ¼ 0.915 and 0.793 mm−1, respectively.

Table 2 Mean and standard errors of reduced scattering (μs 0) and absorption (μa) coefficients of
seven perfused placental tissues.

Placenta μs 0 (760) (mm−1) μa (760) (mm−1) μs 0 (840) (mm−1) μa (840) (mm−1)

1 0.924 (�0.014) 0.005 (�0.003) 0.798 (�0.011) 0.006 (�0.003)

2 0.822 (�0.004) 0.008 (�0.0001) 0.721 (�0.004) 0.005 (�0.0001)

3 1.055 (�0.020) 0.018 (�0.002) 0.928 (�0.009) 0.013 (�0.0009)

4 1.020 (�0.012) 0.015 (�0.001) 0.903 (�0.009) 0.006 (�0.0005)

5 0.900 (�0.023) 0.015 (�0.004) 0.787 (�0.011) 0.007 (�0.002)

6 0.899 (�0.013) 0.008 (�0.0009) 0.821 (�0.007) 0.004 (�0.0004)

7 0.979 (�0.021) 0.017 (�0.001) 0.859 (�0.010) 0.005 (�0.001)

Mean 0.943 (�0.015) 0.012 (�0.002) 0.831 (�0.009) 0.007 (�0.001)

Fig. 3 Diffuse reflectance profiles at the maternal side of a perfused placenta: Measured intensity
values (black dots) plotted as a function of SD distance and random walk fit (blue solid line) at
(a) 760 and (b) 840 nm.
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4 Discussion

In this study, we have shown the feasibility of using a continuous wave DRS system in assess-
ment of reduced scattering coefficient of the placental tissue ex-vivo. However, it is important to
emphasize that the measurement in this study was performed on well-perfused placenta tissues.
Based on the study by Yao et al.,18 the placental blood volume fraction, when the umbilical cord
was clamped 5 s after delivery was ∼21%. The removal of the blood from these placentas affects
the measured reduced scattering coefficient from its value in-vivo. However, the residual blood
volume varies by large amounts in the ex-vivo placentas. Placental blood is lost during the

Fig. 5 Reduced scattering coefficients calculated from two devices. The black dashed line shows
the power fit of the DOSI measurement (black dots) while the blue dots represent the DRS mea-
surements from placenta 1. Abbreviations: DOSI, diffuse optical spectroscopic system; DRS, dif-
fuse reflectance spectroscopy.

Fig. 4 Amplitude and phase model fit of DOSI data measured on placenta 1
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cesarean delivery, transportation of the placenta and the umbilical cord clamping time.
According to Yao et al.,18 clamping time can change the residual placental blood volume up
to 60%. In addition, even though the umbilical cord was clamped, the blood inside of the pla-
centa still drained out from the maternal side during the transportation to the lab. Therefore, we
report the reduced scattering coefficient of the underlying placental tissue without blood.
Scattering properties of the blood will need to be considered when performing noninvasive mon-
itoring of placental oxygenation with known or estimated placental blood volume fraction.

Additionally, the results from the in-house DRS device can be affected to some extent by the
light reflected back into the tissue from the boundary between the tissue surface and the device.
However, the difference in the DRS intensity was negligible (<1%) when measurements were
performed on the Acrin phantom with and without coating the surface of the device using a black
tape. Hence, we expect the effect of reflected light on calculated scattering coefficient is insig-
nificant. In addition to reporting the optical scattering of the human placenta, this work provides
a simpler, more compact, and cost-effective system and methodology to measure the scattering
properties of the human placental tissue ex-vivo. These factors will help in generating a large
database from normal and abnormal pregnancies. The data presented here act as a reference point
for future studies and will help provide more accurate distribution of the optical scattering prop-
erties of the human placenta.

5 Conclusion

In this study, we used DRS in continuous wave and frequency-domain mode to measure the
optical scattering coefficient of the human placenta without blood in the NIR range. The pro-
vided power law equation can be used to calculate the reduced scattering coefficient at any wave-
length in the NIR band. This platform can facilitate the study of key parameters such as tissue
oxygenation and blood flow within the placenta. The results reported herein could allow a more
precise calculation of placental oxygenation and assess the respiratory function of the organ
noninvasively. In the future, it would be important to assess the scattering properties of placentas
obtained from normal pregnancy and those with complications. Overall, our in-house DRS
device provides a simpler and compact means for measurement of optical properties on the pla-
centa, which can help generate larger database.
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