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ABSTRACT. Mangroves maintain coastal balance and have the greatest potential for carbon
sequestration. Most mapping studies on mangroves have focused on their extent
and distribution and rarely featured mangrove species. Therefore, the objective of
our study is to investigate mangrove species mapping from integrated Sentinel-2
imagery and field spectral data using a random forest (RF) algorithm. Study areas
are located in East and South Lampung, Indonesia. The field samples used repre-
sented 144 points of mangrove species. The classification method used an RF algo-
rithm and four models with varying parameters: model 1 with Sentinel-2; model 2
with both Sentinel-2 and field spectral data; model 3 with Sentinel-2, field spectral
data, and spectrally transformed data; and model 4 only with spectrally transformed
data. The results showed that Rhizophora mucronata, Sonneratia alba, Avicennia
lanata, and Avicennia marina were the most common mangrove species in these
areas, with reflectance values in the range of 0.002 to 0.493, 0.006 to 0.833,
0.014 to 0.768, and 0.002 to 0.758. Permutation importance (PI) that affects the
classification model is the red band, near-infrared, and green normalized difference
vegetation index, where the most PI in model 3 is 0.283. The highest level of agree-
ment for mangrove species is found in model 3. Model 3 is the best parameter for RF
classification that showed the best mapping accuracy, with the overall accuracy,
user accuracy, producer accuracy, and kappa value being 81.25%, 81.68%,
81.25%, and 0.80, respectively.
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1 Introduction
Mangrove ecosystems support various services,1–3 including nutrient cycling, and serve as a
vehicle for fisheries production that dominates the areas between tides along tropical4 and sub-
tropical coasts.5–7 Despite mangroves making only up 0.7% of tropical forests worldwide,8,9 they
contribute ∼50% of carbon stocks.10,11 Human activities have reduced the area of mangrove
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forests by 30% to 50% in the last half century due to excessive exploitation/logging,2,11,12

conversion into pond areas, and the development of the areas.2,13

Lampung is a coastal area covered by various mangroves14 including Rhizophora mucro-
nata, which grows on muddy soil types and, occasionally, on sandy reefs.15 R. mucronata is
distributed in the East Coast of Lampung, mainly in Pasir Sakti, East Lampung Regency.
Sonneratia alba is another mangrove that grows in sandy mud. The lower leaves of
Avicennia lanata and A. marina exhibit a similar morphology while being salty, exhibiting ellip-
tical leaf tips,16 and being distributed in sandy areas with fine mud near estuaries in Ketapang
subdistrict, South Lampung.17

Given the several types of scattered species that reflect the development and condition of
mangroves, it is necessary to identify and classify mangroves. Several methods have been used
previously for identification of mangrove by only in situ measurements18,19 or by utilizing sat-
ellite imagery.20,21 In situ mangrove monitoring provides the most accurate information on man-
grove distribution; however, data collection through field surveys remains challenging due to
limited accessibility to mangroves.22 Mangroves are located in relatively wet areas and subjected
to high tides.2 Thus remote sensing has become a practical way to map and monitor mangrove
forests. Remote sensing provides land cover information using pixel-based analysis.23

Furthermore, integration of artificial intelligence, mathematical algorithms, and big data
analysis with high-resolution sensing imaging data has become more common.24,25 These data
can be collected on a regular basis over a wide geographic area, enabling precise, and accurate
monitoring of mangrove forest ecosystems.22 The use of remote sensing technologies is expand-
ing, along with the demand for spatial data. Remote sensing data are essential for extracting
parameters and biophysical data in identifying mangrove forests.26 These data in coastal areas
can be utilized to monitor mangroves. Passive (optical) and active system synthetic aperture radar
images are the two forms of remote sensing images that can be used for land monitoring.26

The classification and segmentation of coastal objects, including mangrove cover and tidal
marsh, allows for determining the extent of each object. Using machine learning techniques,
including support vector machines (SVM),5,22,25–28 support vector regression, artificial neural
network,29 random forest (RF),22,30,31 decision tree, symbolic regression,32 extreme gradient
boosting regression,33,34 light gradient boosting machine (LightGBM), and extreme gradient
boosting (XGBoost), allows for the retrieval of data on mangrove distribution. RF has an excel-
lent biomass modeling ability35 and can increase the precision of land cover mapping, wetland
mapping,36 and mangrove species classification.5,34,37

Mangrove identification is performed based on mangrove canopy properties. This can be
analyzed using vegetation index transformation.24,38 One technique for changing vegetation indi-
ces is the green normalized difference vegetation index (GNDVI).17 This technique shows param-
eters related to vegetation,28,39 such as green foliage biomass and area, which are essential for
vegetation division. In addition, since mangroves are located in relatively wet areas, a moisture
index, such as the normalized difference moisture index (NDMI)17 and a wetness index, such as
the normalized difference water index (NDWI) can be used to accurately identify them.

Earlier studies have not differentiated mangrove species and focused only on mangrove for-
est size and distribution.40 Mangrove species composition and distribution data are critical to
understanding mangrove ecosystem functions and ensuring sustainable mangrove conserva-
tion.29 However, mangroves of a single species typically form tiny patches or thin strips that
are invisible on satellite images. Furthermore, using machine learning models and remote sensing
data for mangrove species mapping is challenging since there is no clear zoning between species
due to the spectral similarity of mangroves.28 This underlies the importance of mangrove map-
ping at the species level. Correctly identifying species will provide insights into the relationships
between them. In addition, mangrove species classification allows the monitoring of a particular
species population over time. This will help in detecting changes in the population size, distri-
bution, and health of mangrove species. Previous studies have used machine learning models for
mangrove species mapping using SVM classification with Worldview-2 images and aerial
photographs.28,41 Behera et al.38 identified the mangrove species Heritiera fomes, Excoecaria
agallocha, and Avicennia officinalis using reflectance/backscatter bands and vegetation indices
derived from Sentinel-2, AVIRIS-NG, and Sentinel-1. Meanwhile, Paramanik et al.42 only
used AVIRIS-NG hyperspectral imagery, which successfully identified the species H. fomes,
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E. agallocha, and A. officinalis and two of their combinations (H. fomes–E. agallocha and A.
officinalis–E. agallocha), and Ghorbanian et al.22 were limited to mapping mangrove ecosystems
using Sentinel-1 and Sentinel-2 images using RF. For developing the classification model, the
parameter used was vegetation index;38 this is in contrast to the present study, which not only
used the vegetation index but also the wetness and moisture indices. In addition, the directly
measured reflectance value was also a parameter used for further modeling, which improved
the accuracy of classification mapping.

Mangrove species can be categorized by changing the algorithm or applying new
information.28 Mapping and classifying mangrove species can be accomplished using a combi-
nation of RF algorithms and field spectroradiometers. Herein, the leaf area index,43 vegetation
texture and index,44 humidity, and wetness were used as parameters. High-resolution data are
useful for classifying mangrove species; nonetheless, they are not available for all areas.45

Previous studies have investigated mangrove reflectance using satellite data; however, obser-
vations of the spectral properties of mangrove biota using satellite images are insufficient, owing
to the challenge of recognizing mangrove species solely from the canopy.46 This is supported by
previous research showing that object reflectance using a field spectroradiometer can be directly
measured for mangrove species mapping.45 Other findings have indicated that each mangrove
species has a unique spectral reflectance and can be easily identified and mapped with adjacent
wavelength bands in the near-infrared (NIR) region.15

Information on mangrove species is essential for mangrove management; however, insuffi-
cient research related to species classification has been conducted, especially in Lampung,
Indonesia. Therefore, the objective of this research is to investigate mangrove species mapping
using integrated Sentinel-2 imagery and field spectral data processed by an RF algorithm. The
novelty of this study lies in the determination of the best parameters for RF classification, thus
enhancing the accuracy of identifying mangrove species for the management, monitoring, and
rehabilitation of mangroves in study areas.

2 Materials and Methods

2.1 Study Site
The study was chosen along the coastlines of Lampung, Indonesia, specifically targeting the
east47 and south areas and located between 5°25′30″S–5°51′0″S and 105°30′0″E–105°52′0″E.
Tidal swamp plains are found along the east coast with an elevation of ∼0.5 to 1 m above the
mean sea level, and sedimentation areas based on the rising tide characterize the research site
in these two districts (East and South Lampung) (Fig. 1).

2.2 Datasets

2.2.1 Image data

The image data used in this study were from the Sentinel-2A image, which has 13 channels and
various resolutions.48 Sentinel-2A imagery is suitable for classifying land cover as they contain
four channels with a spatial resolution of 10 m. Sentinel-2A observes the Earth in various
spectral ranges, including visible light and NIR. The Sentinel-2A data parameters are listed
in Table 1.

2.2.2 Field data

The spectral values of each mangrove species were collected from August 6 to 15, 2022. The
sample locations and number of sample points were determined based on the raw pixel values of
mangrove objects on Sentinel-2A, specifically the red band, green band, and NIR band.45

Additionally, the determination considers access to the sampling location as well since some
locations are difficult to reach. The pixel values obtained are plotted onto a map to determine
the reflectance value of mangrove species in the field.45 The obtained reflectance data were used
for preparing a spectral library that served as the basis for the construction of classification
models. The number of trees taken was 144, with an average tree height of 7 to 15 m.
Based on the results of field measurements, four mangrove species were observed, namely:
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A. marina, A. lanata, S. alba, and R. mucronata. Each species was observed in several different
locations by measuring the diameter at breast height (DBH) of several trees in each location. The
average DBH of S. alba in Ketapang was 55 cm, that of R. mucronata in Pasir Sakti was 17 cm,
and that of both A. marina and A. lanata in Ketapang was 91 cm. The number of samples in each
plot varies depending on the size of the tree as the larger the tree DBH, the fewer the number of
trees. The range of the number of trees in a sample plot was 10 to 15 trees.

Table 1 Sentinel-2A data parameters.

Parameter Dataset Spatial resolution (m)

Red band (1) Sentinel-2A imagery 10

Green band (2) Sentinel-2A imagery 10

NIR band (3) Sentinel-2A imagery 10

Red band (4) Field spectrometer 10

Green band (5) Field spectrometer 10

NIR band (6) Field spectrometer 10

Density (GNDVI) (7) Sentinel-2A imagery 10

Humidity (NDMI) (8) Sentinel-2A imagery 10

Water index (NDWI) (9) Sentinel-2A imagery 10

Fig. 1 (a) Study area (RGB Sentinel-2A: August 6–15, 2022), (b) sampling points in Pasir Sakti,
and (c) sampling points in Ketapang.
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The sample points were evenly distributed in mangrove areas to represent each mangrove
species. The spectral reflectance of the mangroves was measured using a field spectroradiom-
eter,45 a commonly used method to analyze the spectrum of light reflected or emitted.49

Reflectance data were collected at the leaf level by selecting mangrove leaves that represent
various species or conditions in the area. The spectroradiometer was placed above the leaf
to measure the reflectance of light at various wavelengths, ranging from ultraviolet (315 nm)
to SWIR (1100 nm).

The sample plots are determined based on the regulations of the head of the geospatial infor-
mation agency number 3 of 2014, which include technical guidelines for collecting and process-
ing mangrove geospatial data as well as the Sentinel-2A imagery data. The plot size used is
10 × 10 m.50 Each plot had a different number of samples based on the diameter and size of
the mangrove canopy. The number of samples in a plot was 5 to 10. The types of species in
the study area were similar in some areas because they shared common traits that grouped them
together in certain parts of the region. Measurements using a field spectroradiometer can identify
mangrove species based on the resulting spectrum patterns.

2.3 Methodological Approach
SNAP 9.0.0 version was used for Sentinel-2A image preprocessing, whereas Endmapbox was
used for processing of field spectroradiometer data, and quantum GIS was used for RF classi-
fication. The spectral bands used were red, green, and NIR. The methodology included radio-
metric and geometric correction, vegetation index transformation, moisture, and water indices,
direct spectral measurements in the field, classification, accuracy testing, and mangrove species
mapping. Fig. 2 outlines the research process.

Accuracy testing with a confusion matrix method is required for RF algorithm classifica-
tion.51 It is possible to determine whether the classification results are sourced from two separate
classes by comparing the derivatives of each predicted class in the matrix to the derivative of the
actual class in each row. For remote sensing picture classification, the most effective and practical
validation tool is the confusion matrix method.52 The vast majority of operations are consolidated
into the error matrix, which use producer accuracy (PA), user accuracy (UA), and overall accu-
racy (OA) as indicators; this method is therefore successful.53 A test of the classification results’

Fig. 2 Flowchart of the methodology applied in this study.
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correctness was performed to gauge the degree of precision of the usage map produced by the
digital classification technique. Although the samples from the training area and accuracy test
were different, the accuracy of the accuracy test sample was more commonly acknowledged
because it was taken in a different area.54

2.3.1 Image preprocessing

The preprocessing analysis was divided into two main stages: radiometric and geometric cor-
rections. In the radiometric correction analysis, the type of image used was Sentinel-2A MSI
Multispectral Instrument, level 1C,55 a product that has not been radiometrically and atmospheri-
cally corrected; therefore, pixel errors due to atmospheric influences must be minimized. The
best image with <10% cloud cover was chosen for preprocessing. The selected recording period
was between January 1 and December 31, 2022. The best data were the Sentinel-2A image
recording on August 7, 2022, which had the minimum cloud cover such that the objects beneath
were clearly visible. For each of the image’s multispectral channels, radiometric calibration was
carried out by translating digital values (DN) into radians.

The radian image was converted to top of atmosphere reflectance after radiometric calibra-
tion. The main objective was to correct for differences in reflectance values due to variations in
the Earth–Sun distance on each recording date.56 These differences can be significant owing to
the differences in geographical conditions and the time of image recording. The fast line-of-sight
atmospheric analysis of spectral hypercubes atmospheric correction method was used for the
correction to reduce atmospheric impacts.56 Sentinel-2A image processing was used to facilitate
the analysis of the mangrove cover during the geometric correction stage. The geometric cor-
rection used in this study was image-to-map, with the reference data being an Indonesian
Landform map based on ground control points (GCPs) collected directly in the field. The inter-
polation method used was a nearest-neighbor algorithm that only retrieves the nearest pixel value
shifted to a new position. Six GCPs were used in the geometric correction, with a root-mean-
square error value of 0.33 pixel.

2.3.2 Mangrove reflectance

The ASD HandHeld 2: hand-held visible NIR spectroradiometer (ASD Inc., Alpharetta, Georgia,
United States) was used for mangrove reflectance measurements. The spectroradiometer was
calibrated with a white reference prior to use45 and recalibrated in cases where a significant differ-
ence in light intensity was noticed during use or when a “saturation alert” warning was issued.15

A total of 144 reflectance values were obtained, and measurements were performed between
09.00 and 14.00 WIB to reduce the influence of weather at the research site. The angular position
of the spectroradiometer sensor was set at 45 deg to the direction of sunlight to avoid shadows on
the target object.57 Measurements were made on land and partly using boats owing to difficult
access to the sites.

The presence of mangroves above the water was sufficient to affect the spectral value due
to the possibility of water reflection interfering with the mangrove reflectance value. The sup-
ported data output format was .txt, with data collection conducted from August 6 to 15, 2022.
The Sentinel-2A image recording date was August 7, 2022. Table 2 lists a comparison of the
wavelengths used in the Sentinel-2A image and the spectroradiometer. The results of the
in situ measurements were used to develop a spectrum library58 to compare the spectral image
to the reference spectrum. The spectrum library was used as the reference to compare the
Sentinel-2A image reflectance value to the field reflectance value.59 The pixel values of
mangrove species were used as the target spectrum for spectral matching-based object
classification.

Table 2 lists the spectral width or resolution of the spectroradiometer used for the meas-
urement of the reflectance of mangrove species. The spectral resolution of the spectroradiometer
spans seven wavelength bands, ranging from 315 to 1100 nm. However, for mangrove mea-
surements, the wavelengths used were green (525 to 605 nm), red (655 to 725 nm), and
NIR (725 to 750 nm) and adjusted to correspond with the pre-existing wavelengths in the
Sentinel-2A image.
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2.3.3 Spectral transformation development

Three index transformations were used in this study: GNDVI, NDWI, and NDMI, which are
strongly associated with mangrove species characteristics and represent different groups of
parameter types. GNDVI was created to assess the level of the vegetation’s greenness using
values generated by digital signal processing of brightness data from many satellite sensor data
channels.60 Conversely, in densely vegetated areas with good environmental conditions, the ratio
of the two channels is exceptionally high (maximum) in the NIR band, whereas vegetation reflec-
tance drops in the red band. The water spectral reflectance pattern decreases in the infrared (IR)
and red light bands.61

The index provides a number between –1 and 1, representing vegetation cover density. In
general, an index close to 1 indicates dense vegetation, whereas that below 0 indicates water and
clouds.62,63 The algorithm in remote sensing applications measures the greenness of vegetation
using NIR and red wavelengths. The equation for GNDVI is as follows:64

EQ-TARGET;temp:intralink-;e001;117;320GNDVI ¼ ðNIR − greenÞ
ðNIRþ greenÞ : (1)

Vegetation density was used to determine parameters for mapping mangrove species. The
results of the transformation of the vegetation index with GNDVI are used to classify density into
low, medium, and high. According to GNDVI analysis, the value range for each class was low
(−0.91 to 0), moderate (0.01 to 0.45), and high (0.46 to 0.95), respectively. The visual repre-
sentation of the vegetation density maps based on several indices is shown below. Vegetation
index classes are determined based on the range of GNDVI values; the absence of vegetation is
classified as low, moderate to dense coverage is labeled as medium, and vegetation with a high-
density coverage is classified as high.65

For mapping water bodies, NDWI was the most suitable index. In the visible-to-IR spec-
trum, water has high absorption and low reflectance66 Based on this phenomenon, this index
takes advantage of the green and NIR colors in remote sensing photos. Due to its sensitivity
to built-up terrain and tendency to overestimate water, NDWI can effectively improve water
information.67 The following equation was used to determine NDWI:68

EQ-TARGET;temp:intralink-;e002;117;126NDWI ¼ ðgreen − NIRÞ
ðgreenþ NIRÞ : (2)

NDMI, computed as the ratio of the difference in the amounts of refracted radiation in the
NIR and SWIR zones, describes the water level of the crop. The interpretation of the NDMI’s

Table 2 Wavelength bands used by Sentinel-2A and the spectroradiometer.

Sentinel-2A Spectroradiometer

Wavelength (nm) Band name Wavelength (nm) Band name

433 to 453 Coastal aerosol 315 to 400 Violet

458 to 523 Blue 400 to 525 Blue

543 to 578 Green 525 to 605 Green

650 to 680 Red 605 to 655 Yellow

698 to 713 Red edge 1 655 to 725 Red

733 to 748 Red edge 2 725 to 750 NIR

773 to 793 Red edge 750 to 1100 SWIR

785 to 899 NIR

855 to 875 NIR narrow

1565 to 1655 SWIR

Simarmata et al.: Mangrove ecosystem species mapping from integrated. . .

Journal of Applied Remote Sensing 014509-7 Jan–Mar 2024 • Vol. 18(1)



absolute value enables the quick identification of agricultural or field areas experiencing water
stress issues. The NDMI is also simple to comprehend; regardless of the crop, its value ranges
from −1 to 1, with each number denoting a different agronomic conditions.67,69 NDMI was deter-
mined using the following equation:30

EQ-TARGET;temp:intralink-;e003;114;519NDMI ¼ ðNIR − SWIR1Þ
ðNIR þ SWIR2Þ : (3)

2.3.4 Model development

Before using the RF algorithm to classify species, parameters related to species identification
were extracted to obtain classification results with reasonable accuracy.51 Then parameter testing
was accomplished by analyzing the correlation between the parameters. The RF algorithm model
was based on several parameters categorized into four classification models (Table 3).

Model 1 used green, red, and NIR band parameters; model 2 used green, red, and NIR band
parameters as well as additional field spectroradiometer measurements. During model prepara-
tion, reflectance value parameters in the field were determined by plotting the reflectance values
of mangrove species in the field onto a map. The reflectance data obtained were used to prepare a
spectrum library that was used to construct a classification model.45 Spectral reflectance analysis
of mangrove species can be effectively performed using the ASD HandHeld 2 device in the
wavelength range of 350 to 940 nm. This wavelength range was chosen based on the character-
istics of the spectrometer specifications used.

Spectra representing mangrove species collected in the spectral reference source were
resampled to match the center wavelength of the Sentinel-2A image band. The developed model
was named model 3 and was based on red, green, and NIR band parameters, field spectro-
radiometer measurements, GNDVI, NDWI, and NDMI, meanwhile, model 4 uses the parameters
GNDVI, NDWI, and NDMI. Each node was divided by RF using a randomized selection of input
features or predictive variables.

2.4 Mangrove Classification Using RF
Each node in an RF model is divided into a random subset of input characteristics or predictive
variables. In addition, to increase tree diversity, for building trees from various training data, RF
employs bagging or bootstrap aggregation.37,70,71 RF requires the selection of attributes (samples)
and pruning methods.72,73 The RF algorithm creates multiple bootstrap samples by randomly
sampling the training data with replacement. The equation for bootstrap sampling is as follows:

EQ-TARGET;temp:intralink-;e004;114;156D 0 ¼ D �
�
1 −

1

e

�
n
; (4)

where D 0 is the bootstrap sample, D is the original dataset, n is the number of examples in the
bootstrap sample, and e is expressed as the base of the natural logarithm (∼2.71828).

Typically, an RF algorithm assesses the quality of a split in a decision tree using impurity
metrics like the Gini index or entropy.74 The formula for the Gini index is as follows:

Table 3 Variables combinations used in each model.

Model
Number of
variables

Model 1 (red, green, and NIR) 3

Model 2 [red, NIR, green (Sentinel-2A), red, NIR, green (field spectral data)] 6

Model 3 [red, NIR, green (Sentinel-2A), red, NIR, green (field spectral data),
GNDVI, NDWI, and NDMI)]

9

Model 4 (GNDVI, NDWI, and NDMI) 4

Abbreviations: GNDVI, green normalized difference vegetation index, NDWI, normalized difference water
index, NDMI, normalized difference moisture index.
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EQ-TARGET;temp:intralink-;e005;117;736Gini index ¼ 1 − ΣðpiÞ2; (5)

where pi is the proportion of instances of class i at a particular node.
The entropy equation is as follows:37

EQ-TARGET;temp:intralink-;e006;117;694entropy ¼ −Σðpi � log2 piÞ; (6)

where pi is the proportion of instances of class i at a particular node.
The ultimate prediction in the RF method was created by voting together the predictions of

many decision trees.4 For classification tasks, the majority vote was considered the final predic-
tion. In classification, to improve processing effectiveness, it is crucial to understand how each
variable affects the outcomes.75 Variable importance, or the permutation importance (PI) value, or
the mean decrease accuracy value was used to determine the contribution of a variable to the
classification outcome. The more important the variable is, the greater its permutation value will
be. The importance of the variables increases with the accuracy drop:38

EQ-TARGET;temp:intralink-;e007;117;575variable importance ¼ OOBpermutation − OOBbas: (7)

Out-of-bag (OOB) permutation is a measurement of variable importance that is determined
by permuting variable data values not used for tree building. Out-of-bag basic (OOBbas) rep-
resents a basic measurement of variable importance without permutation. Counting the instances
of the variable in the decision tree group is a simplistic method of determining the variable’s
relevance. The importance of the variable increases with its influence. When determining the
relative relevance of a variable, the regression coefficient’s absolute value was employed; the
higher the coefficient value is, the larger the contribution of the variable in question to the bio-
mass estimate for each unit change in the variable.38,76

PI is an algorithm used to obtain feature importance information by permuting (reordering
the data set) the features used in training the prediction model. The process involves training a
prediction model, permutation of features in the data, and re-evaluating the model. If a feature
does not contribute much to the performance of a model, then reordering the data will have no
significant effect; conversely, a feature with a significant contribution will greatly affect the per-
formance of the model if the data were reordered.

2.5 Training Sampling and Predictive Performance
The sampling method used in this research is purposive random sampling. The purposive random
sampling method was tailored to certain criteria to make the selected sample more representa-
tive.71,75,77 Purposive random sampling was used to collect samples based on the consideration of
built-up development and obtain samples that are representative of the study area. The obtained
sample points were used for model training and accuracy tests.77 The sample selection was per-
formed by considering local knowledge and field checks. The number of image pixels in the
mangrove area ranged from 396,115 pixels at location 1 to 216,738 at location 2. The classi-
fication process requires two types of data: training and testing. Training data are a sample of the
entire population in the field used to build a model. In contrast, testing data are representative
points of objects in the field used to validate the correctness of the results. The following equation
was used to determine how many training samples are needed:

EQ-TARGET;temp:intralink-;e008;117;227n ¼ N
1þ N × ðeÞ2 ; (8)

where n is the number of samples, N is the population, and e is the margin of error (percentage
allowance for the accuracy of sampling errors that are acceptable). Based on the aforementioned
technique and the number of pixels in the study, there were 400 pixels in each of the
training samples. The following equation was used to determine the number of test points in
this study:51

EQ-TARGET;temp:intralink-;e009;117;131N ¼ Z2ðpÞðqÞ
E2

; (9)

where p is defined as the expected percentage accuracy, q ¼ 100 − p, E is the acceptable error,
and Z ¼ 2, calculated from the normal deviation of 1.96 at the 95% confidence level, N is the
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number of training samples obtained using the above method, and the number of pixels in each
sample in this study is 144.

Predictive performance measures the model’s ability to produce predictive results in accor-
dance with the actual data.78 A good model has high predictive performance, i.e., the predictions
made match the reality or original data. This test involves 70% training data and 30% testing data.
Predictive performance of mangrove classification refers to the extent to which a classification
model can make accurate predictions related to the category or type of mangrove based on the
parameters used as input for modeling.54,78,79

3 Results

3.1 Spectral Library of Mangrove Species
The mangrove species found in this study area were R. mucronata, S. alba, A. lanata, and A.
marina. Data were collected from 144 sample points spread across the East Coast of East and
South Lampung. A spectroradiometer was used to sample several leaves of different mangrove
plants (Fig. 3). The results of reflectance measurements showed that A. lanata, R. mucronata, and
A. marina exhibited reflectance values ranging from 0.014 to 0.768, 0.002 to 0.493, and 0.002 to
0.758, respectively; the reflectance values for S. alba ranged from 0.006 to 0.833. Rhizophora
species exhibited a lower reflectance value than A. marina at wavelengths of 325 to 675 nm;
nevertheless, spectral values at wavelengths of 680 to 700 nm were similar. Furthermore, the
spectral values increased at wavelengths of 725 to 1075 nm. As evidenced by the large variance
of the curve compared to that of the visible spectrum, the measurement findings demonstrate that
the NIR wavelengths are particularly sensitive to the measuring distance.57

The reflectance value can be influenced by several factors, one of which is the time of data
collection due to the angle of the altitude of the Sun at different sample points. In addition, the
sensor direction relative to the nadir and the characteristics and conditions of the object can also
influence the reflectance value. Rhizophora species showed higher reflectance values at wave-
lengths of 325 to 475 nm, and the values increased in the wavelengths of 525 to 575 nm. Further,
they decreased at wavelengths of 625 to 675 nm and increased at 725 to 1075 nm. The reflectance

Fig. 3 Shapes of leaves, roots, and flowers: (a) leaves and fruits of R. mucronata , (b) roots and
stems ofR. mucronata, (c) leaves and fruits of A. lanata, (d) roots and stems of A. lanata, (e) leaves
and fruits of A. marina, (f) roots and stems of A. marina, (g) leaves and fruits of S. alba, and (h) roots
and stems of S. alba.
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patterns of Rhizophora and A. marina were relatively similar, except that lower reflectance was
observed in the wavelength range of 325 to 475 nm.

The pattern of these two species could be distinguished since the values for R. mucronata
were higher than those for A. marina. The spectroradiometer used in the field had a sensitivity
of only 1075 nm. In contrast, the Sentinel-2A image has a sensitivity of 2190 nm with the SWIR
band, allowing it to be compared in the visible IR (green, red, and blue) and NIR bands with
wavelengths measured with a field spectroradiometer. Figure 4 shows the spectral data collection
process at one of the locations in the mangrove ecosystem.

Visible near-infrared spectroradiometer and Sentinel-2A field data processing and extraction
results showed the same curve pattern, called a single-peak curve, albeit with different wave-
lengths. There were differences in the reflectance values of Sentinel-2A image processing from
the time of measurement in the field. This is likely because the recording time is the main factor
influencing the difference in species at the peak of the curve. A factor influencing the intensity of
sunlight that the sensor can receive is the method of measuring samples in the field, such as the
location of the measured leaf parts, field conditions, and density of each mangrove tree.80

Figure 5 illustrates the box plots of the reflectance values of mangrove species.
The wavelength of light used differed for each mangrove species. At 443 to 665 nm,

A. marina and A. lanata species had the highest median values; at 740 to 940 nm, S. alba species
had the highest median wavelength and was followed by A. marina and A. lanata species. In
general, R. mucronata species have the lowest median value among other species. The results
from the box plot analysis showed differences between the species. The differences in the
median, IQR, and presence of outliers indicate the variations in reflectance intensity and
elucidate the potential unique characteristics of each species in the field spectroradiometer
measurements.

Our findings illustrated the unique characteristic reflection patterns in the light spectrum of
each mangrove species, thus allowing easy recognition and mapping of these species. This rec-
ognition and mapping can be accomplished using wavelength ranges adjacent to the NIR region,
which facilitates the identification process based on the different light reflectance patterns
produced by each mangrove species.15

According to Behera et al.,38 the NIR and SWIR bands show considerable differences in
reflectance intensity, with A. officinalis species showing higher reflectance than H. fomes and
E. agallocha, despite these two species having identical spectral reflectance. In line with our
findings, A. marina is known to exhibit high reflectance values in the NIR region at lower visible
wavelengths. Meanwhile, S. alba tended to show higher values at all wavelengths.

Fig. 4 Field sampling of mangrove species: (a) spectral measurements using a field spectro-
radiometer and (b) types of Rhizopora mangrove species measured at the study site.
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3.2 Mangrove Species Classification
Species classification was tested using vegetation index parameters GNDVI, NDWI, and NDMI.
Correlation with GNDVI, NDWI, and NDMI index values was measured using a field spectror-
adiometer. Comparing vegetation indices calculated from images with vegetation index data
collected directly in the field can be used to evaluate the accuracy and relevance of images
in representing actual vegetation conditions. The GNDVI parameter had a correlation value
(R2) of 0.71, indicating that the density parameter had an influence of 71%, whereas other factors
contributed to the remaining 29%. The NDWI correlation value was 0.6, indicating that the den-
sity parameter had an influence of 60%, and other factors influenced the remaining 40%. The
NDMI correlation coefficient was 0.66, indicating that the density parameter had an influence of
66%, and other factors influenced the remaining 34%.

The classification of mangrove species analyzed using the RF algorithm, resulted in four
types of mangrove species, namely: A. lanata, R. mucronata, A. marina, and S. alba. The clas-
sification model consisted of four models with different numbers of parameters as mentioned in
Table 3. Model 1 shows that in the Pasir Sakti area, A. marina and R. mucronata dominated;
meanwhile, S. alba dominated in the Ketapang area. Results from the model 2 classification show
that Pasir Sakti are mostly populated by A. marina and R. mucronata species, whereas A. lanata
and S. alba species are widely distributed in Ketapang. Additionally, model 3 shows similar

Fig. 5 Box plots of reflectance values: (a) measurement results of reflectance values using a field
spectroradiometer and (b) results of reflectance value analysis using Sentinel-2A imagery. The
median in each box plot indicates average reflectance value. The bottom horizontal line of the
box presents the first quartile (Q1), and the top horizontal line presents the third quartile (Q3).
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results, where A. marina and R. mucronata dominated the Pasir Sakti area, whereas A. lanata and
S. alba comprised most of the mangrove population in Ketapang. In contrast, for model 4,
A. marina and A. lanata are dominant in Pasar Sakti, whereas S. alba and A. lanata dominate
in Ketapang. The distribution of mangroves based on the classification model is shown in Figs. 6
and 7.

In the coastal area of South Lampung, most of the mangroves were dominated by S. alba and
A. lanata, whereas in East Lampung, the dominant species were A. marina and R. mucronata.
The types of mangroves found in the research location had characteristics that were clustered
because there were planted mangroves. The RF algorithm can be used to distinguish between
several mangrove species, such as R. mucronata, S. alba, A. lanata, A. marina, and non-
mangroves. This classification contrasts species classes analyzed using spectral value inputs and

Fig. 6 Classification of mangrove species using RF with model 1: (a) mangrove species map in
Pasir Sakti, (b) mangrove species map Ketapang, (c) classification of mangrove species using RF
with model 2 in Pasir Sakti, and (d) classification of mangrove species using RF with Model 2 in
Ketapang.
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vegetation index/density values with those analyzed using spectral value inputs from field mea-
surements and density. The classification results for each species revealed that each species had a
clustering pattern within one area. This suggests the influence of the environment on the char-
acteristics of the mangrove species. Environmental factors that affect mangrove growth in a loca-
tion include coastal physiography (topography), tides (length, duration, and range), waves and
currents, climate (light, rainfall, temperature, and wind), salinity, dissolved oxygen, soil, and
nutrients.81

Based on the results of the classification of mangrove species, Table 4 lists the respective
mangrove areas as per models 1 to 4. Models 1 to 3 covered 254.61, 331.75, 307.06 ha, and
361.42, respectively. A. marina had the highest abundance. R. mucronata covered the smallest

Fig. 7 Classification of mangrove species using RF with model 3: (a) mangrove species map in
Pasir Sakti, (b) mangrove species map Ketapang, (c) classification of mangrove species using RF
with model 4 in Pasir Sakti, and (d) classification of mangrove species using RF with model 4 in
Ketapang.

Simarmata et al.: Mangrove ecosystem species mapping from integrated. . .

Journal of Applied Remote Sensing 014509-14 Jan–Mar 2024 • Vol. 18(1)



area in models 1 and 4, whereas A. lanata covered the smallest area in Model 4. For R. mucro-
nata, the area covered in model 2 differed significantly from those in the other two models.

3.3 Predictive Performance of Classification
Prediction results indicate a significant variation in accuracy among the different models. Indeed,
model 1 showed an accuracy rate of 70.69%; model 2 increased the accuracy to 76.81%; model 3
achieved an accuracy of 81.25%; model 4 had an accuracy rate of 79.17%. A notable change
occurred from models 1 to 2, where the accuracy increased by ∼6.12%. However, the difference
of 2.08% in accuracy between models 3 and 4 was not significant. This change in accuracy
suggests that the use of certain parameters in the model has a major impact on the prediction
performance. Model 2 might have involved some adjustments or additional parameters that
improved its accuracy compared with model 1. Similarly, model 3, while having a modest differ-
ence in accuracy from model 4, might have also involved more careful parameter configuration to
achieve significant performance improvements.78 The kappa value of models 1 to model 4 was
0.696, 0.778, 0.80, and 0.78, respectively (Fig. 8).

Sahani and Ghosh82 indicated that the classification of the kappa value is based on the level
of agreement: <0.05 (zero), 0.05 to 0.20 (very bad), 0.20 to 0.40 (bad), 0.40 to 0.55 (fair), 0.55
to 0.70 (good), 0.70 to 0.85 (very good), 0.85 to 0.99 (excellent), and 0.99 to 1 (perfect).82 Thus
the kappa value in this study can be classified in the “good to excellent” category, where the
kappa value of all models ranged between 0.696 and 0.80.

The classification results show that the higher the parameters used for modeling are, the
higher the accuracy and kappa values are. The correctly classified graph in Fig. 8 explains that
A. lanata is referred to as ALA, A. marina is referred to as AMA, R. mucronata as RMU, and S.
alba refers to SAL. Details regarding the graph comparing the accuracy and kappa values are
shown in Fig. 8.

Model 1 produced an OA of 70.69% for 720 sample points. R. mucronata obtained UA
76.39% and PA 70.06%, S. alba obtained UA 68.06% and PA 66.22%, A. lanata obtained UA
69.44% and PA 76.92%, A. marina obtained UA 62.50% and PA 68.70%, and non-mangrove
obtained UA 77.08 and PA 72.08%. Based on previous research, the maximum accuracy of
74% was obtained by combining AVIRIS-NG data, whereas another study explained that the
OA was 69.44% for pixel-based classification and 82% for object-based classification using
RF.5,38 An accuracy test was conducted using the Sentinel-2A confusion matrix/error test
(Table 5).

Model 2 exhibited an OA of 76.81% for 720 sample points. R. mucronata obtained UA
values of 83.33% and PA of 96.77%, and S. alba obtained UA of 76.39% and PA of 76.92%,
A. lanata obtained UA of 70.14% and PA of 64.33%, A. marina obtained UA of 74.31% and PA
of 72.79%, and non-mangrove obtained UA of 79.86% and PA of 77.17%. Details on the accu-
racy test of model 2 are presented in Table 6.

Model 3 exhibited an OA of 81.25% for 720 sample points. R. mucronata obtained UA
values of 84.03% and PA of 90.98%, S. alba obtained UA of 79.86% and PA of 83.94%, A.
lanata obtained UA of 86.11% and PA 75.61%, A. marina obtained UA of 76.39% and PA
of 73.33%, and non-mangrove obtained UA of 79.86% and PA of 84.56%. Details on the accu-
racy test of model 3 are presented in Table 7.

Table 4 Estimation of mangrove areas (ha) and % by each model.

Species

Model 1 Model 2 Model 3 Model 4

Area Percentage Area Percentage Area Percentage Area Percentage

R. Mucronata 35.82 5.40 129.31 18.44 109.72 16.69 27.45 5.03

S. Alba 211.00 31.82 104.02 14.84 17.83 2.71 147.8 27.09

A. Lanata 161.61 24.37 331.75 47.32 222.98 33.91 8.90 1.63

A. Marina 254.61 38.40 136.00 19.40 307.06 46.69 361.42 66.24
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Model 4 showed an OA of 79.17% for 720 sample points. R. mucronata showed a UA
value of 79.17% and PA of 89.06%, S. alba showed a UA of 80.56% and PA of 76.32%,
A. lanata showed a UA of 79.17% and PA of 73.55%, A. marina showed a UA of 81.94%
and PA of 72.84%, and the non-mangrove group showed a UA of 75.00% and PA of 87.80%
(Table 8).

Model 3 had the highest accuracy of the four models with the most parameters. Previous
studies have attempted to improve mapping accuracy, including mapping based on machine
learning classification.83 It is challenging to map mangrove species using remote sensing data
from spectral reflectance patterns measured directly in the field.57 In mangrove habitats, several
water and soil quality parameters of mangrove species can be described using remote sensing
data. The study also discovered that variations in mangrove reflectance at the canopy level are
determined by the amount of chlorophyll in the species, environmental conditions at the time of

Fig. 8 Predictive performance for the training: (a) comparison of kappa value and accuracy of
model 1, (b) datasets using model 1, (c) kappa value and accuracy of model 2, (d) datasets using
model 2, (e) kappa value and accuracy of model 3, (f) datasets using model 3, (g) kappa value and
accuracy of model 4, and (h) datasets using model 4.
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Table 7 Classification accuracy of model 3.

Image data

Field data

R. mucronata S. alba A. lanata A. marina Non-mangrove Total UA (%)

R. mucronata 121 0 14 9 0 144 84.03

S. alba 2 115 15 12 0 144 79.86

A. lanata 3 7 124 9 1 144 8611

A. marina 5 0 9 110 20 144 76.39

Non-mangrove 2 15 2 10 115 144 79.86

Total 133 137 164 150 136 720

PA (%) 90.98 83.94 75.61 73.33 84.56 408.42

OA (%) 81.25

Table 5 Classification accuracy of model 1.

Image data

Field data

R. mucronata S. alba A. lanata A. marina Non-mangrove Total UA (%)

R. mucronata 110 25 5 4 0 144 76.39

S. alba 20 98 0 15 11 144 68.06

A. lanata 0 25 100 5 14 144 69.44

A. marina 21 0 15 90 18 144 62.50

Non-mangrove 6 0 10 17 111 144 77.08

Total 157 148 130 131 154 720

PA (%) 70.06 66.22 76.92 68.70 72.08 353.98

OA (%) 70.69

Table 6 Classification accuracy of model 2.

Field data

Image data R. mucronata S. alba A. lanata A. marina Non-mangrove Total UA (%)

R. mucronata 120 6 6 12 0 144 83.33

S. alba 0 110 15 10 9 144 76.39

A. lanata 0 20 101 8 15 144 70.14

A. marina 4 3 20 107 10 144 74.31

Non-mangrove 0 4 15 10 115 144 79.86

Total 124 143 157 147 149 720

PA (%) 96.77 76.92 64.33 72.79 77.18 388.00

OA (%) 76.81
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measurement, and the background reflectance of soil and water.46 When measuring mangrove
spectral reflectance in the field, variations can be caused by lighting circumstances, canopy struc-
ture, leaf orientation, measurement distance, and background objects.57

Prior research related to mangrove classification obtained mangrove species from Avicennia,
Rhizophora, and Sonneratia using K-means and decision tree methods.47 The results for the
mangrove class showed considerable PA and UA averages of roughly 94.4% and 94.5%, respec-
tively, demonstrating the usefulness of the adopted strategy for precise mangrove delineation.
According to Rahmawati et al.,64 in the classification using RF algorithm, various vegetation
indices were used, including enhanced vegetation index, normalized difference vegetation index
(NDVI), soil-adjusted vegetation index, GNDVI, modified normalized difference water index,
NDWI, index-based built-up index, and land surface water index. The mangrove area obtained
was 424.48 ha with an OA of 58.45% and a kappa value of 39.59.

3.4 Agreement Level Analysis
Agreement level analysis was conducted by comparing and observing the similarity of pixels by
overlaying datasets based on cross-walking between classes.84 In line with the results of previous
research, in this study, the classification results were calculated to determine the percentage of
species similarities found in models 1 to 4. The RF algorithms were classified into four models
based on the parameters used. Model 1 used red, green, and NIR band parameters; model 2
used red, green, and NIR band parameters and additional field spectroradiometer measurements;
model 3 used red, green, and NIR band parameters, field spectroradiometer measurements,
GNDVI, NDWI, and NDMI; and model 4 only used GNDVI, NDWI, and NDMI depicts the
findings of the agreement level analysis. The mangrove area was calculated based on the level
of species similarity generated by the four models using the agreement level analysis. The clas-
sification results were analyzed based on the similarity of species generated from these four
models, including A. marina, A. lanata, R. mucronata, and S. alba (Figs. 9 and 10). The aim
of this analysis was to compare the area of each species based on the similarity of the classi-
fication results (Table 9).

The results of the agreement level analysis show that each species had the highest percentage
in model 3. Meanwhile, model 2 showed the lowest representation for R. mucronata (3%) and A.
lanata (9%), whereas model 3 had the highest percentages of these species (72% and 41%,
respectively). S. alba and A. marina have the lowest percentages in model 4 (22% and 20%,
respectively), whereas their highest percentage was observed in model 3 (29%). However, unlike
S. alba, A. marina had the highest percentage in model 1 (at 32%).

Table 10 lists the analysis results, where the preparation of this agreement level was based on
the similarity of species generated by each model. Agreement level 1 indicates that A. lanata, A.
marina, R. mucronata, and S. alba were found in models 1 to 4. Agreement level 2 is when the
same species was found in two out of the four models, whereas agreement level 3 shows that the

Table 8 Classification accuracy of model 4.

Image data

Field data

R. mucronata S. alba A. lanata A. marina Non-mangrove Total UA (%)

R. mucronata 114 1 13 15 1 144 79.17

S. alba 4 116 12 10 2 144 80.56

A. lanata 5 12 114 11 2 144 79.17

A. marina 2 4 10 118 10 144 81.94

Non-mangrove 3 19 6 8 108 144 75.00

Total 128 152 155 162 123 720

PA (%) 89.06 76.32 73.55 72.84 87.80 399.57

OA (%) 79.17
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species was only found in one model. R. mucronata and S. alba were not found at this location,
but only S. alba did not have an area in agreement level 2. The results of agreement level 1
showed that A. marina at site 1 had the largest area compared with that of other species at
115.46 ha, with agreement level 2 at 134.37 ha and agreement level 3 at 201.11 ha. This analysis
showed that site 1 was dominated by A. marina, the second site was mostly dominated by
R. mucronata. The respective distributions at levels 1, 2, and 3 were 71.76, 72.47, and
79.30 ha, respectively.

4 Discussion
By combining the characteristics obtained from Sentinel-2A photographs with the findings
of field reflectance measurements made using a field spectroradiometer, this study helped to
identify the types of mangrove species. We assessed the potential of the RF algorithm for

Fig. 9 Confident level for mangrove species classification: agreement level of (a) A. lanata in Pasir
Sakti, (b) of A. lanata in Ketapang, (c) A. marina in Pasir Sakti, and (d) A. marina in Ketapang.
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Table 9 Species similarity based on agreement level analysis of each model.

Species Model 1 (%) Model 2 (%) Model 3 (%) Model 4 (%)

R. mucronata 15 3 72 10

S. alba 23 26 29 22

A. marina 32 23 25 20

A. lanata 25 9 41 25

Fig. 10 Confident level for mangrove species classification: agreement level of (a)R. mucronata in
Pasir Sakti, (b) R. mucronata in Ketapang, (c) S. alba in Pasir Sakti, and (d) S. alba in Ketapang.
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classification of mangrove species using the best model to improve accuracy. The following
mangrove species were identified: A. lanata, A. marina, R. mucronata, and S. alba.

4.1 Spectral Signature Clustering of Mangrove Species
Spectral clustering of mangrove species signatures was accomplished by analyzing the spectral
response patterns produced by mangrove plants at various wavelengths, especially in the spectral
range that includes visible and NIR wavelengths. To determine the spectral separation between
the various mangrove species, a canonic discriminant analysis was conducted within a reflec-
tance range of 443 to 940 nm. Our findings demonstrated the association between the discrimi-
nant value and the group that had a correlation value of 0.896; since this value is very close to 1, a
positive relationship is observed (the correlation magnitude is between 0 and 1)15 (Table 11).

The Wilk’s lambda value of 0.368 indicated a significant difference between at least one
group or category among the wavelength and reflectance values. This is reinforced by the chi-
square value of 23.23, which indicates that the difference was extremely significant, especially
when compared with the general significance level (0.05).15 The significance result of 0.000
indicates that the observed difference is statistically significant since this value is much lower
than the preset significance level. Canonical correlation analysis revealed that different wave-
lengths have a differentiating impact on each other. As such, these findings provide strong evi-
dence of the relationship between wavelength variables and reflectance values, with differences
being identifiable through the canonical correlation analysis conducted.

4.2 Correlation of Sentinel-2A Image Reflectance and Spectral Field
Measurements

Green, red, and NIR wavelengths in Sentinel-2A imagery and field measurements were corre-
lated to determine how well the data varied from the results of both measurements. The statistical
analysis results showed that in the green, red, and NIR bands, the R2 value swere 0.69, 0.73, and
0.82, respectively (Fig. 11); the R2 value of 0.69 in the green band indicated that ∼69% of the
variation in the field measurements could be explained by the reflectance value at the green
wavelength in the Sentinel-2A imagery. This shows a positive relationship between the field
and image data; however, this model could not explain ∼31% of the variation. Similarly, the
R2 value of 0.73 in the red band indicated that ∼73% of the variation in the field measurements
could be explained by the reflectance values at the red wavelength in the Sentinel-2A imagery
and showed a good relationship between the field and image data (slightly better than in the green
band).62 In the NIR band, the R2 value (0.82) was the highest among the three spectral bands,
suggesting that ∼82% of the variation in the field measurements could be explained by the reflec-
tance values at NIR wavelengths in the Sentinel-2A imagery. This relationship was stronger and

Table 11 Canonical discriminant eigenvalue results.

Function Eigenvalue % of variance Cumulative % Canonical correlation

1 4.056a 100 100 0.896

aFirst 1 canonical discriminant functions were used in the analysis.

Table 10 Mangrove species area (ha) based on agreement level analysis.

Mangrove species

Agreement level 1 Agreement level 2 Agreement level 3

Location 1 Location 2 Location 1 Location 2 Location 1 Location 2

A. lanata 3.28 3.51 12.02 13.10 72.16 26.20

A. marina 115.46 6.48 134.37 15.66 201.11 8.43

R. mucronata 0 71.76 0.04 72.47 0.01 79.30

S. alba 0 0.1 0 0.26 14.51 2.66
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more consistent than for the previous two spectral bands. The correlation between the Sentinel-
2A wavelength and field spectroradiometer is illustrated in Fig. 11.

4.3 Variable Importance Analysis
The best parameter analysis uses variable importance to identify important variables as inputs for
further biomass estimation.85 Analysis of the most important variables was performed on all
classification models. Details of the permutation graph are illustrated in Fig. 11.

All selected variables were tested and evaluated for their contribution to the classification
model. Based on variable importance analysis, the highest PI value for model 1 was 0.102 (red
band), whereas those for models 2 and 3, were 0.338 and 0.283, respectively (NIR band). In
model 4, GNDVI had the highest importance score, 0.14972, indicating that GNDVI had the
most significant impact on decision-making. NDMI had an importance score of 0.121066, indi-
cating that this variable also had a considerable contribution to the analysis. Meanwhile, NDWI
had a lower importance score of 0.054272, indicating that in this context, NDWI had a more
limited impact compared with the other two variables. More details of the PI values are presented
in Table 12 (Fig. 12).

Similar to findings of related mangrove-related research,85,86 the vegetation index generated
from mid-IR and NIR, and texture, which is derived from the red band, are the two most crucial
factors.87

4.4 Best Model for Mangrove Species Classification
The best parameter analysis uses variable importance to identify important variables as input for
mangrove species classification. Model 3 showed the highest accuracy compared with the other
two models that used only parameters from Sentinel bands and ground reflectance measure-
ments. The OA of model 3 was 81.25%, the UA was 81.68%, and the PA was 81.25%
(Table 13). These findings suggest that adding parameters to the classification can improve the
accuracy of mangrove species mapping.

Fig. 11 Correlation between Sentinel-2A image reflectance values and field spectroradiometer: R
square value of the (a) green, (b) red, and (c) NIR band reflectance of the field spectroradiometer
and Sentinel-2A.
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Table 12 PI values obtained in each model.

Model 1 Model 2 Model 3 Model 4

Band PI Band PI Band PI

Green (Sentinel-2A) 0.005 Green (Spectro) 0.033 Green (Spectro) 0.007 NDWI 0.054

NIR (Sentinel-2A) 0.060 Green (Sentinel-2A) 0.042 NIR (Spectro) 0.007 NDMI 0.121

Red (Sentinel-2A) 0.102 NIR (Spectro) 0.059 NDWI 0.009 GNDVI 0.149

Red (Spectro) 0.113 Green (Sentinel-2A) 0.020

Red (Sentinel-2A) 0.187 NDMI 0.020

NIR (Sentinel-2A) 0.338 GNDVI 0.036

Red (Spectro) 0.075

Red (Sentinel-2A) 0.137

NIR (Sentinel-2A) 0.283

Fig. 12 Variable importance plots are shown for (a) model 1, (b) model 2, (c) model 3, and
(d) model 4.

Table 13 Classification accuracy results of each model.

Model OA (%) UA (%) PA (%)

Model 1 (red, green, and NIR) 70.69 70.69 69.26

Model 2 (red, NIR, green, and field spectral data) 76.81 77.59 76.80

Model 3 (red, NIR, green, field spectral data,
GNDVI, NDWI, and NDMI)

81.25 81.68 81.25

Model 4 (GNDVI, NDWI, and NDMI) 79.17 79.17 79.91

Abbreviations: GNDVI, green normalized difference vegetation index, NDWI, normalized difference water
index, NDMI, normalized difference moisture index.
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Although mangrove mapping can be done well with RF algorithms, errors often occur when
classifying objects. This is common in the classification of other vegetation, bare land, or water
bodies.88 The decrease in accuracy can be caused by several factors, such as phenological simi-
larities, incorrect input parameters in modeling, and the level of heterogeneity of the objects
being described.78,89

4.5 Spatial Distribution of Mangrove Species
Based on the findings of the image analysis and field reflection measurements, the mangrove
species identified in South Lampung Beach were R. mucronata, S. alba, A. lanata, and A.
marina. R. mucronata species in the best model (model 3) has an area of 109.72 ha with a per-
centage of 16.69%; S. alba has an area of 17.83 ha with a percentage of 2.71%; A. lanata has an
area of 222.98 ha with a percentage of 33.91%; and A. marina has an area of 307.06 ha with a
percentage of 46.69%. The total area of mangroves is 657.59 ha. Classification results show that
it has the highest area, whereas S. alba species has the lowest area.

An RF algorithm with vegetation index parameters and spectral reflectance was used to map
mangrove species. GNDVI has been used as a parameter to represent the phenology of mangrove
species.30,39,90 The RF was used to demonstrate the feasibility of mangrove species classification.
The reflectance patterns of R. mucronata, S. alba, A. lanata, and A. marina were similar at a
wavelength of 325 to 475 nm. An increase in reflectance occurred at wavelengths of 525 to
575 nm, whereas a significant increase was observed at wavelengths of 720 to 1075 nm.
The existence of irregular patterns in object reflections can be caused by several factors, such
as disturbances that occur owing to variable cloud cover, fluctuations in light sources, and
weather conditions during sampling in the field. This interference can be referred to as “noise”
and cannot be used for analyzing the spectral characteristics of vegetation reflectance; therefore,
the data from the noise are ignored.80

The accuracy test results showed an OA of 84.51% with 71 field-observation sample
points. Mangrove management, conservation, and restoration depend on accurate mapping of
the quality, distribution, and number of species.91 In this study, we combined recursive feature
elimination and deep learning methods with ensemble RF, XGBoost, LightGBM, CatBoost, and
AdaBoost Mcnemar tests. Our findings revealed a significant difference in the classification of
mangrove species. SVM classification produced better accuracy than decision tree classification
as it can minimize errors in image interpretation, with OA values reaching 95% (kappa ¼ 0.86)
and 93% (kappa ¼ 0.82).26 We observed better accuracy with the RF model when used with
Sentinel-2 in distinguishing the three dominant species.38 Using Worldview imagery to classify
mangrove species, it was discovered that the RF technique was more accurate and effective than
SVM with an OA of 95.89% and a kappa coefficient of 0.95. As there are uncertain data related
to the distribution and extent of mangroves, particularly in Asia, conducting assessments, and
modeling related to mangrove ecosystem services is required.44

This mapping is scenario-based, resulting in a well-developed quantification.92 Extraction of
mangrove information for high accuracy, via optimizing the images used by integrating the
results of spectroradiometer measurements and medium resolution, remains essential.93 In this
regard, further research related to the analysis of ecosystem services in mangrove ecosystems is
warranted to assess the balance of ecosystem services between beneficiaries (humans) and man-
grove resources. This analysis involves several aspects related to mangrove management, which
is often known as community-based management.94

5 Conclusion
Combining spectral imagery and reflectance measurements using an RF algorithm can improve
the accuracy value of the classification of mangrove species. The most common mangrove spe-
cies classified are R. mucronata, S. alba, A. lanata, and A. marina. Reflectance measurement
results using a field spectroradiometer for mangrove species, A. lanata shows reflectance values
between 0.014 and 0.768, R. mucronata between 0.002 and 0.493, and A. marina between 0.002
and 0.758 and S. alba between 0.006 and 0.833. PI that affects the classification model are the
red band, NIR band, and GNDVI where the most PI in model 3 is 0.283. Overall, the highest level
of agreement in the analysis results for mangrove species was found in model 3. Model 3 is the
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best parameter for RF classification, which showed the best mapping accuracy, with the OA, UA,
PA, and kappa value being 81.25%, 81.68%, 81.25%, and 0.80, respectively. Future research for
improving accuracy value can be used multispatial, multispectral imagery, and adding field data
for training samples and check points.
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