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Abstract. Anamorphic zoom lenses, used extensively in the motion picture industry, pose a
significant design challenge, combining the difficulties of designing a high-performance zoom
lens with those of designing an anamorphic lens. As a result, considerable emphasis must be
placed on the first-order configuration of the starting point design before interfacing with optical
design software. AMonte Carlo search method is introduced for generating first-order designs of
anamorphic zoom lenses based on two different configurations. The obtained designs possess
valid zoom motions and ray trace successfully while satisfying a set of system specifications.
This search method offers a time effective and illustrative way of exploring the global solution
space of first-order designs for use as starting points on the way to a thick lens, color-corrected
final design. The results of such a Monte Carlo search are presented for two types of anamorphic
zoom configurations, and a design example is demonstrated. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.OE.60.5.051203]
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1 Introduction

The primary function of an imaging system, at its core, is a way of mapping object space to
image space. The properties of this mapping, such as the relative sizes of the object and image,
are largely determined by a certain characteristic of the imaging system, either effective focal
length (EFL) for infinite conjugate objects or magnification for finite conjugate objects. For the
typical case of systems that possess rotational symmetry, the EFL or magnification is constant
azimuthally about the optical axis, and as a result, the degree of object-image mapping remains
constant azimuthally. A constant azimuthal mapping is not a requirement for imaging, however.
One may wonder the benefit of having an image mapping that instead varies azimuthally. One
such circumstance was explored by Henri Chrétien when designing a periscope for tanks.1,2 With
more pertinent information appearing laterally in a scene, Chrétien recognized that tank oper-
ators required a wide horizontal field-of-view but with as small of an opening as possible in the
tank. The solution was a periscope using cylindrical optics to achieve a “stretched” horizontal
field-of-view by means of an azimuthally varying image mapping. Chrétien’s periscope is
an example of an anamorphic optical system, which is defined as a system that is differently
powered in two orthogonal planes of symmetry.3 In anamorphic systems, the result of such an
orthogonal difference in power and an orthogonal difference in image mapping is that images
appear spatially compressed and stretched along these perpendicular axes. To contribute power
differently along different axes, anamorphic designs require non-rotationally symmetric optical
elements. This is most often achieved with cylindrical optical surfaces, which impart optical
power along a single axis, but different prism pairs,4,5 toroidal surfaces,6 and gradient-index
optics 7 are also used. Anamorphic optics have been used for a variety of applications for a
very long time, first dating back to the early nineteenth century.8

Starting in the mid-twentieth century with “CinemaScope,” anamorphic cinema lenses have
been used extensively in shooting motion pictures.9 Anamorphic lenses were originally devel-
oped in cinema to capture widescreen, high aspect ratio images compressed on standardized, and
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lower aspect ratio film formats [Fig. 1(a)].10 Doing so achieves higher image resolution and
optical throughput than the alternative of shooting the same widescreen format gated, meaning
the top and bottom of the film cell go unused [Fig. 1(b)]. Although more customized sensor
formats are available today, anamorphic lenses have remained popular in cinema due to their
unique image characteristics including elliptical bokeh,11 differential depth-of-field, and linear
lens flare. A unique aspect of designing cinema lenses is the attention that must be paid to these
artistic properties,12 the magnitude of which is influenced by the anamorphic ratio, and a critical
specification relating the imaging power in the planes of symmetry. Designing anamorphic
lenses also poses many new challenges not faced for rotationally symmetric systems, mostly
stemming from an expanded set of present aberrations.13,14 Most significantly, anamorphic
designs must eliminate on-axis astigmatism with both orthogonal planes of symmetry imaging
onto a single focal plane.15

As discussed, the mapping of object space to image space depends on a first-order character-
istic of the imaging system, namely the EFL or magnification depending on the imaging con-
jugate. A zoom lens is defined as having a continuously variable EFL or magnification, which
allows for a continuously variable image mapping without the need for refocusing. This offers a
way of continuously varying the field-of-view for a given format and manipulating image prop-
erties such as depth of field. This added versatility along with the need for fewer fixed focal
length (“prime”) lenses explains why zoom lenses are commonplace in the motion picture
industry.16 The design of zoom lenses has been studied in great detail, particularly regarding
the necessary first-order configuration.3,17,18 In the simplest case, a zoom system requires
two independent moving groups of optical elements, the variator for changing EFL, and the
compensator for maintaining a fixed image position. Many different techniques for practically
achieving these first-order requirements have been presented including Monte Carlo
methods.19–21

Due to the prevalence of both anamorphic and zoom lenses in cinema, joint anamorphic
zoom lenses are, naturally, also an essential cinematographic tool. Anamorphic zoom lens
designs have historically separated the anamorphic elements and the zoom moving
groups.22–24 This was done for simplicity but at the cost of increased size and weight and more
limited aberration correction. The anamorphic module could be placed either in the front or the
rear of the rotationally symmetric zoom module, with different optical effects.15 The question
remained of what possibilities existed for a single combined anamorphic zoom module where the
moving optical elements were also the anamorphic elements. The advantage of such a complex
design would be a considerable reduction in size and weight of the lens due to the merging of two
lens modules into one. This question was recently answered for the first time by Dodoc15 who
introduced two types of combined anamorphic zoom modules. With such a recent introduction,
the potential of these two types of anamorphic zoom modules remains to be fully evaluated.

Individually, the design of high performance anamorphic and zoom lenses is a challenge, so
the task of designing a combined anamorphic zoom lens is quite significant. Unlike rotationally
symmetric designs, the anamorphic zoom design space is far more insular, making it very dif-
ficult to transition between different solution spaces. For these reasons, with the ultimate goal in
mind of a final design with satisfactory performance and manufacturing tolerances, considerable

(a) (b)

Fig. 1 Widescreen image captured on a film cell with (a) an anamorphic lens and (b) a rotationally
symmetric lens. The anamorphic image is spatially compressed according to the anamorphic ratio
and fills the entirety of the film cell. Alternatively, the image from a rotationally symmetric lens must
be gated to capture the full widescreen image, but the top and bottom of the film cell go unused.
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attention must be paid to the first-order configuration of the starting design. This paper explores
the global design space of the two new anamorphic zoom configurations presented by Dodoc.15

Using a Monte Carlo search method, the solution spaces of these two design types are fully
examined to statistically identify the most promising first-order design configurations. The
Monte Carlo search method is presented including how to randomly generate first-order ana-
morphic zoom solutions tailored to meet system specifications. All generated solutions are then
able to be evaluated for successful ray tracing and compared based on various performance
metrics. The result yields a close to ideal first-order starting point that will enable the creation
of a satisfactory final design for an anamorphic cinema zoom lens.

2 First-Order Design Configurations

Both anamorphic and zoom designs present unique difficulties on a first-order level that must be
understood individually before attempting combined anamorphic zoom configurations.

With the lost degree of rotational symmetry, anamorphic systems present unique design chal-
lenges not found in rotationally symmetric optical systems. Most significantly, the aberration
content of anamorphic systems is different than that found in rotationally symmetric systems.
For an anamorphic system, the x − z and y − z orthogonal planes of symmetry both possess the
Seidel aberrations but in differing amounts. There are, however, eight additional non-rotationally
symmetric aberrations originating from skew rays not lying in one of the planes of symmetry, as
shown by Yuan and Sasian.13,14 On-axis astigmatism is an example of such an aberration seen in
anamorphic but not rotationally symmetric systems. The presence of on-axis astigmatism in an
anamorphic system can be understood by first considering a single anamorphic element such as a
cylindrical lens. For an on-axis point source, a cylindrical lens produces an on-axis line image-
oriented orthogonal to the cylindrical axis. To produce a stigmatic image on-axis, a second
anamorphic element is required to be oriented orthogonal to the first and must maintain an image
position coincident with the image position of the first anamorphic element (see Fig. 2).
This elimination of on-axis astigmatism presents a key requirement for valid first-order (VFO)
anamorphic configurations, as described in Sec. 3.1. A further consequence of orthogonal ana-
morphic elements is that there are at most two conjugates for which stigmatic imaging is possible
on-axis.13 This imposes a limitation on refocusing for different object distances and was the
cause of a notorious problem with early anamorphic cinema lenses known as “anamorphic
mumps” where close focus positions presented significant on-axis astigmatism. This problem
was later solved by Wallin25 using an ingenious method of compensating on-axis astigmatism by
rotating two cylindrical elements relative to one another.

Zoom systems also present added constraints on first-order designs. By definition, a zoom
lens must have a continuously variable EFL (or magnification) while also maintaining a fixed
image position. This latter requirement is to ensure an object remains in focus while zooming.

y

z

x

z

Fig. 2 Presence of on-axis astigmatism for an anamorphic system due to changing conjugates.
A single system is shown in the x − z and y − z orthogonal planes of symmetry where cylindrical
elements possess power in one axis and no power in the other. Stigmatic imaging occurs only for
a single conjugate (green rays). Changing the image conjugate (blue and red rays) introduces
on-axis astigmatism.
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In a mechanically compensated zoom, at least two element groups must move independently to
meet these requirements, the variator to change EFL and the compensator to maintain a fixed
image position.17 Additional groups, both fixed and moving, are often employed to provide addi-
tional aberration correction, a focusing mechanism, and a fixed total track length (TTL), where
TTL is the distance from the first surface vertex to the image. A requirement of all zoom groups
is that their movements do not “crash,” meaning their positions do not intersect through zoom.
This would require groups to change order when zooming, which is not realizable with standard
mechanics. Lastly, zoom design configurations are often classified by the order of their groups
based on the sign of their power, either positive (P), negative (N), or minimally powered (X). For
example, NPX would denote a three-group zoom with a negative, positive, and minimally pow-
ered group in that order. The global zoom design space consists of all possible combinations of
power signs based on the number of groups.

Focusing now on the design of a combined anamorphic zoom, Dodoc introduced two types
of first-order configurations that incorporate the anamorphic components into the zoom moving
groups.15 Both types are capable of meeting the standard zoom constraints and the constraint of
maintaining a constant anamorphic ratio through zoom. Recall, for an infinite conjugate ana-
morphic system, the anamorphic ratio is defined as the ratio of the system focal lengths in the
orthogonal x − z and y − z planes of symmetry:

EQ-TARGET;temp:intralink-;e001;116;520AR ¼ EFLy

EFLx
: (1)

The type I anamorphic zoom configuration [Fig. 3(a)] consists of six zoom groups using two
variators and two compensators for a total of four internal moving groups. Using cylindrical
elements, one variator-compensator pair operates exclusively in the x − z plane while the other
pair operates exclusively in the y − z plane. The stationary front and rear groups are rotationally
symmetric and serve in both planes of symmetry as the focus and relay groups, respectively. This
means that the difference in system focal length in the x − z and y − z planes according to the
anamorphic ratio is entirely attributed to the four anamorphic moving groups (two variator-
compensator pairs). Finally, the aperture stop is located after all moving groups in the relay
group to maintain a constant f/number through zoom with a constant iris diameter. The type
I configuration is essentially two independent four-group zoom designs in orthogonal planes
linked by the anamorphic ratio and two shared stationary groups. As will be seen in Sec. 3.1,
two linked four-group zooms are the basis for generating type I first-order solutions.

The type II anamorphic zoom configuration [Fig. 3(b)] consists of five groups with a single
spherical variator and two cylindrical compensators oriented orthogonally in x and y for a total of
three internal moving groups. As in type I configurations, the first and rear groups are stationary

Focus Variator Compensator Relay
Y X XY

Type I

Type II

(a)

(b)
X Y

y
x

y
x

Fig. 3 Type I and type II first-order configurations introduced by Dodoc 15 for combined anamor-
phic zoom designs. Both configuration types are depicted with cutouts along the orthogonal planes
of symmetry. (a) Type I uses two anamorphic variator-compensators pairs operating in orthogonal
planes. (b) Type II uses a spherical variator shared by two anamorphic compensators oriented in
orthogonal planes. Both types have fixed focus and relay groups in the front and rear, respectively.
The aperture stop is located at the relay group.
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and used as focusing and relay groups, respectively, where the anamorphic ratio is imparted by
the two cylindrical compensators. The aperture stop is again located in the relay group. Unlike in
type I, there are three additional constraints on the type II configuration due to the shared spheri-
cal variator. These constraints are to ensure there is a constant anamorphic ratio through zoom, as
shown by Dodoc.15 First, in both orthogonal planes of symmetry, the marginal ray bundle must
enter the final (relay) group collimated. Second, the ratio of the cylindrical compensator focal
lengths must be equal to the system anamorphic ratio. Third, the separation of the cylindrical
compensators must equal their difference in focal length. These additional constraints mean a
modified four-group zoom must be used for generating Type II first-order solutions, as done in
Sec. 3.1.

For each configuration type, the anamorphic zoom design space is composed of all possible
combinations of group power and cylinder orientation orderings (see Table 1). For example, in
Fig. 3 the type I configuration is in the PNNPPN-YXYX solution space since the order of the
group power signs is PNNPPN and the orientation of the four cylindrical moving groups is
YXYX. For this example, it can be seen that the design form is PNPN in both x and y, so this
solution space can further be abbreviated as PNPN-YXYX. Similarly, the type II configuration in
Fig. 3 is in the PPNP-XY solution space. These are just two of the many possible combinations
of power and cylinder orderings for both configurations.

For type I, the number of power combinations (either P or N) with six groups is 26 ¼ 64

possible combinations. There are also six different orderings of cylindrical power (either X or Y),
considering two must be in X and two in Y. This means for type I there are in total 384 possible
first-order solution spaces. It is worth noting that for type I configurations the sign of power is
not required to be the same between the two variators and between the two compensators.

For type II, since the ratio of the compensator focal lengths needs to be equal to the system
anamorphic ratio, the compensators are required to have the same sign power. This means for
type II with five groups but four independent power signs there are 24 ¼ 16 power combinations.
Due to the additional compensator constraints on type II configurations, there is only 1 valid
ordering of cylindrical elements, depending on the sign of the compensators. For positive com-
pensators the cylinder order must be YX and for negative compensators the order must be XY.
This means for type II there are only 16 possible first-order solution spaces compared with 384
for type I.

3 Monte Carlo Search

The objective of the Monte Carlo search is to identify which of the many aforementioned first-
order solution spaces (see Table 1) will offer the best starting point to lead to a satisfactory final
design. The Monte Carlo search offers an extremely time effective and informative way of glob-
ally inspecting all solution spaces at once rather locally inspecting each individually.

The Monte Carlo search is a three-step process (see Fig. 4). First, given a set of boundary
conditions, first-order solutions are randomly generated, and VFO solutions are identified. Next,
all VFO solutions are checked for successful thin lens ray tracing across the defined zoom
positions, aperture, and field-of-view. The VFO solutions that also successfully ray trace are
then identified and saved. Last, the ray traceable (RT) solutions are optimized and evaluated
for various performance metrics. The result is a collection of many VFO-RT solutions that can
be analyzed and ranked to identify the most successful solution spaces to use as starting points.

Table 1 Number of anamorphic zoom solution spaces for type I and type II
first-order design configurations. The total number of solution spaces orig-
inates from all possible orderings of group power and cylinder orientation.

Power Cylinder Total

Type I 64 6 384

Type II 16 1 16
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Although applied here to anamorphic cinema zoom lenses, the fundamentals of the presented
Monte Carlo search process can be applied to any highly diverse design space as an efficient way
of globally searching for starting points. For example, similar processes have been applied in the
past to the design of four group zoom lenses19,20 and riflescopes.21

3.1 Solution Generation

The initial step in the Monte Carlo search process is to generate first-order solutions. First, ran-
dom values are chosen for the group focal lengths, TTL, and back focal length (BFL). The sign
of power for the group focal lengths is also chosen at random, except in the case of type II
configurations where the compensator focal lengths are constrained by the anamorphic ratio.
The magnitude of these randomly selected values is based on boundary conditions provided for
allowable group EFL, TTL, and BFL values.

VFO solutions that continue in the Monte Carlo search are those that meet three criteria:
(1) they produce a real image, (2) there are no internal images, and (3) there are no zoom group
crashes. These requirements are to ensure a properly oriented and accessible image plane and
realizable zoom motions. Given the randomly selected group EFLs, TTL, and BFL, a solution’s
group zoom motions can be calculated using paraxial imaging equations. This is done differently
depending on whether a type I or type II configuration is being examined, but both types rely on
a four-group zoom motion being applied independently in the x − z and y − z planes. These two
four-group zooms are connected by having system focal lengths related by the anamorphic ratio
and having the same stationary front and rear groups.

For type I configurations, a standard four-group zoom layout (see Fig. 5) is applied
separately in the x − z and y − z planes. The infinite conjugate four-group zoom motion can
be derived by repurposing a finite conjugate two-group zoom17 as the two internal moving
groups over an internal distance L. The full four-group zoom is then obtained by adding the
stationary front and rear groups to the two-group finite zoom to achieve infinite conjugate
imaging, as done by Yee et al.19 Given a system EFL zoom range, TTL, BFL, and group focal
lengths f1, f2, f3, and f4, the zoom motions t1, t2, and t3 of a four-group zoom system are
calculated as

EQ-TARGET;temp:intralink-;e002;116;234VL ¼ TTL − BFL; (2)

EQ-TARGET;temp:intralink-;e003;116;187L ¼ VL − f1 − f4
BFL

BFL − f4
; (3)

EQ-TARGET;temp:intralink-;e004;116;152M ¼ −EFL
VL − L − f1

BFL f1
; (4)

EQ-TARGET;temp:intralink-;e005;116;118c ¼ Lðf2 þ f3Þ þ f2f3
ðM − 1Þ2

M
; (5)

EQ-TARGET;temp:intralink-;e006;116;84t1 ¼ VL − L −
f4BFL

BFL − f4
−

t2ðM − 1Þ þ L
M − 1 −Mt2∕f2

; (6)

Generate 
random 

first-order 
solution

Is there a real 
image, no zoom 
crashes, and no 
internal images?

Is ray tracing 
successful across 
zooms, aperture, 
and field-of-view?

Failed solution

Yes

No

Yes

No

Optimization 
and 

evaluation

Fig. 4 Flowchart of the Monte Carlo search process. VFO solutions are shown in blue, and RT
solutions are in green.
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EQ-TARGET;temp:intralink-;e007;116;510t2 ¼
L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 4c

p

2
; (7)

EQ-TARGET;temp:intralink-;e008;116;463t3 ¼ VL − t1 − t2: (8)

Focusing on Eq. (7), a valid zoom solution is only possible if the radical is real valued, mean-
ing L2 ≥ 4c necessarily for VFO solutions. Also in Eq. (7), the plus-or-minus term means there
are potentially two solutions for each configuration for both the positive and negative roots,
although it is rarely the case that both solutions have valid zoom motions.

For a type I anamorphic zoom, a first-order design is created using two separate four-group
solutions obtained using Eqs. (2)–(8). One four-group system uses the randomly selected values
for group EFLs f1, f2;x, f3;x, and f4 while the system in the orthogonal plane of symmetry uses
f1, f2;y, f3;y, and f4. These two four-group systems are related in several ways. First, the EFL
zoom range of these systems is related by the anamorphic ratio, Eq. (1). Second, both four-group
systems apply the same stationary front and rear group focal lengths and positions to model the
rotationally symmetric focus and relay groups in a type I configuration. Third, applying the same
BFL in both planes of symmetry results in a stigmatic image on-axis, as discussed in Sec. 2.
With these considerations in mind, these two four-group designs can be joined in the orthogonal
planes of symmetry to form a type I first-order solution. The zoom group motions t1;x, t1;y, t2;x,
t2;y, t3;x, and t3;y can now be analyzed to see if there are any group crashes. Examples of a type I
zoom motion for both VFO and crashing solutions can be seen in Fig. 6.

The type II anamorphic zoom configuration relies on a modified four-group zoom (see Fig. 7)
applied separately in the x − z and y − z planes. The modifications of the four-group zoom are to
meet the requirements on the shared spherical variator discussed in Sec. 2, namely, the marginal
ray bundle is collimated into the relay group and the ratio of the compensators in x and y must
equal the anamorphic ratio. Given a system EFL zoom range, TTL, BFL, and group focal lengths
f1, f2, f3, and f4, the zoom motions t1, t2, and t3 for this modified four-group system can
similarly be obtained from paraxial imaging equations:

EQ-TARGET;temp:intralink-;e009;116;172VL ¼ TTL − BFL; (9)

EQ-TARGET;temp:intralink-;e010;116;129M ¼ −EFL
f3
f1f4

; (10)

EQ-TARGET;temp:intralink-;e011;116;94t1 ¼ f1 − f2

�
1

M
− 1

�
; (11)

EQ-TARGET;temp:intralink-;e012;116;62t2 ¼ f3 þ f2ð1 −MÞ; (12)

f1 f2 f3 f4

VL

BFLt1 t2 t3

L

TTL

Fig. 5 Standard four-group zoom layout to be applied to type I anamorphic zoom configurations.
To obtain a type I configuration, two four-group zooms are obtained in the x − z and y − z planes
with different system focal lengths related by the anamorphic ratio and with the same stationary
front and rear groups. Real internal images are shown for first-order illustration but are not per-
mitted in the type I configuration.
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EQ-TARGET;temp:intralink-;e013;116;241t3 ¼ VL − t1 − t2: (13)

Unlike with the standard four-group zoom for type I configurations, there is only one possible
zoom motion solution for the modified four-group zoom. There is also no constraint due to the
realness of a radical.

For a type II anamorphic zoom, a first-order design is created using two separate modified
four-group solutions obtained using Eqs. (9)–(13). One modified four-group system uses the
randomly selected values for group EFLs f1, f2, f3;x, and f4 while the system in the orthogonal
plane of symmetry uses f1, f2, f3;y, and f4. As for the type I configuration, the system EFL
zoom range of these two four-group systems are related by the anamorphic ratio. Again, both
four-group systems apply the same stationary front and rear group focal lengths and positions,
including BFL to ensure stigmatic imaging on-axis. Finally, these two modified four-group
designs can be joined in orthogonal planes of symmetry to form a type II first-order solution.
The zoom group motions t1, t2;x, t2;y, t3;x, and t3;y can now be analyzed to see if there are any
group crashes. A different aspect of type II configurations is that the compensators in x and y
have the same zoom motion with a constant offset equal to their difference in group focal length.

f1 f2 f3 f4

TTL

BFLt1 t2 t3

VL

Fig. 7 Modified four-group zoom layout to be applied to type II anamorphic zoom configurations.
To achieve a type II configuration, two modified four-group zooms are obtained in the x − z and
y − z planes with different system focal lengths related by the anamorphic ratio and with the same
stationary front and rear groups. Real internal images are shown for first-order illustration but are
not permitted in the type II configuration.

Fig. 6 Example (a) valid and (b) crashing zoom motions of randomly generated type I first-order
solutions in the PNPP-XYYX space. Group position in z (horizontal axis) is shown as a function of
system EFL through zoom in x and y (vertical axes) with an anamorphic ratio of 2. The position
z ¼ 0 mm corresponds to the image plane. Stationary groups are shown in blue and moving
groups in green. Rotationally symmetric groups are shown with solid lines while anamorphic
groups in X are dotted lines and anamorphic groups in Y are dashed. Zoom crashes are circled
in red.
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This is a consequence of the added constraints on applying a shared variator. As a result, in
assembly the two groups can conveniently be mounted together with the same zoom motion
mechanics. As will be seen, however, these added constraints for using a shared variator sig-
nificantly reduce the design space. Examples of a type II zoom motion for both VFO and crash-
ing solutions can be seen in Fig. 8.

3.2 Ray Tracing

After obtaining VFO solutions defined by their group EFLs, TTL, BFL, and zoom motions, the
next step in the Monte Carlo search process is to identify successfully RT solutions. A central
assumption of the Monte Carlo process is that, for each solution space, the number of found
VFO-RT solutions correlates directly with the “size” of the solution space. The size of a solution
space is important because it allows for greater flexibility in optimization when attempting to
obtain a thick lens, color corrected design. As will be seen, although important, the size of a
solution space is not the only factor in determining the best first-order starting point. For exam-
ple, although a solution space may be very large, this does not necessarily mean that it has better
imaging performance than a smaller one.

Ray tracing is performed using the optical design software CODE V® via an automated proc-
ess where a VFO zoom solution is modeled using thin lenses. For consistency across designs,
each group in the model is composed of three thin lenses in contact with each thin lens con-
tributing one-third of the total group power. By splitting group power, multiple thin lenses in a
group improve aberration correction and offer additional variables in optimization. Three thin
lenses per group were found to be adequate for analyzing and filtering starting points, although
this should be adjusted as necessary for designing beyond first-order, as in Sec. 4.4. In addition,
the model is evaluated with real glasses, Schott N-BK7 for positive elements, and Schott N-SF4
for negative elements, although the first-order system is evaluated monochromatically.

For all zoom positions, with the system operating at the design aperture and field-of-view,
rays are traced across the entire pupil and field while checking for ray trace failures. Ray trace
failures occur for predominantly two reasons. First, severe aberrations may result in rays failing
to intersect a surface. These highly aberrated rays may also result in reflection or total internal
reflection at a surface. Second, severe pupil aberrations may prevent a ray from successfully
being traced between the centers of the pupils and the aperture stop. Pupil aberrations can
be mitigated by changing the stop position, but this is not possible under the current requirement
of having the stop positioned after all moving groups. If ray trace failure occurs, design opti-
mization and evaluation cannot take place without adjustment, making these VFO solutions very

Fig. 8 Example (a) valid and (b) crashing zoom motions of randomly generated type II first-order
solutions in the NPNP-XY space. Group position in z (horizontal axis) is shown as a function of
system EFL through zoom in x and y (vertical axes) with an anamorphic ratio of 2. The position
z ¼ 0 mm corresponds to the image plane. Stationary groups are shown in blue and moving
groups in green. Rotationally symmetric groups are shown with solid lines while anamorphic
groups in X are dotted lines and anamorphic groups in Y are dashed. Zoom crash is circled
in red.
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unlikely to be useful starting points. As a result, VFO solutions that fail to ray trace are discarded.
On the other hand, VFO solutions that successfully ray trace for all zoom positions, pupil coor-
dinates, and fields-of-view are saved and classified as RT. These VFO-RT solutions continue on
to the final step in the search process.

3.3 Optimization and Evaluation

The identified VFO-RT solutions now reach the third and final step in the Monte Carlo process:
optimization and evaluation. Each thin lens design is optimized to minimize geometrical spot
size across the field-of-view and across five zoom positions. The only optimization variables are
thin lens bending26 and image refocusing while the group EFLs, TTL, BFL, and zoom motions
are all held constant to remain consistent with the original VFO-RT solution. These limited
variables were found to possess adequate degrees of freedom to analyze and filter solutions.
When attempting a final, thick lens design (see Sec. 4.4), additional variables can be added for
further correction such as the use of different glasses, doublets, or aspheric surfaces.

After optimization, each design is evaluated for geometrical spot size across all fields-of-view
and zoom positions, third-order aberration content, and element clear aperture dimensions.
These performance metrics provide ample information about both the imaging performance and
packaging size of a first-order design and, combined with first-order values such as average
group EFL, TTL, and BFL, offer a thorough picture of the VFO-RT solution. By evaluating
a large population of solutions, the set of performance metrics can be applied, by extension,
to a solution space as a whole.

4 Results

4.1 System Specifications

The outlined Monte Carlo search process was applied to all possible solution spaces for both
type I and type II anamorphic zoom configurations. As discussed by Dodoc,15,18 some solution
spaces are mathematically incapable of meeting the requirements for solution generation laid out
in Sec. 3.1. For example, a solution type with only negatively powered groups is not capable of
forming a real image, one of the requirements of a VFO solution. Nevertheless, all solution
spaces were considered in the search to demonstrate this fact with the only consequence being
lower solution yield per Monte Carlo trial.

The system specifications for all designs in the search can be seen in Table 2. The system
specifications are based on those of standard anamorphic cinema zoom lenses currently available
on the market. For example, an anamorphic ratio of 2 is common in the cinema industry and
produces desirable elliptical bokeh and differential depth-of-field.11,12

Furthermore, the Monte Carlo search boundary values are listed in Table 3. These chosen
boundary values are based on several factors. First, the TTL and BFL packaging boundaries were
based on the established system specifications. Some allowance was issued for the packaging
boundaries due to the later transition from thin to thick lenses. For the group EFL boundary, a
large range is required to find diverse solution spaces. Ideally, group EFL values will be large in
magnitude to reduce thin lens aberrations, as defined by the G-sums.26 Similarly, the minimum
group focal length boundary is set to exclude highly aberrated, short focal length groups that are
unlikely to lead to RT solutions. An additional consideration is how large of a range should be
used for each boundary. Larger boundary ranges entail a more extensive design space will be
explored; however, if a range is too large, many Monte Carlo trials will be spent looking at
unpromising first-order designs.

4.2 Type I Configuration

The type I anamorphic zoom configuration was explored with the Monte Carlo search process
using 1 billion trials to examine the 384 possible solution spaces. The total computation time was
∼41 h using a Dell XPS Desktop (8-core i7-9700 @ 3.0 GHz, 32 GB RAM). The results of the
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search can be seen in Table 4. It was found that 98.2% of RT solutions had the same design form
in the x − z and y − z planes of symmetry. This is considering that prior to ray tracing, the num-
ber of VFO solutions was approximately even with 56.6% having the same x and y solution
types. For example, a PNNPPN-XYXY solution has the same design form, PNPN, in both
x and y since the variators and compensators have the same sign power in the orthogonal planes
of symmetry.

Table 3 Monte Carlo search boundaries for randomly generated
values. The group EFL boundary is unsigned since the power sign
for each group EFL is dependent on a trial’s randomly assigned
solution space.

Parameter Value

Group EFL, range (mm) 20 to 500

TTL (mm) 240 to 360

BFL, range (mm) 35 to 65

Table 2 System specifications used for the Monte Carlo search.
The zoom ratio is the ratio of the longest zoom focal length to the
shortest. The projected image aspect ratio of 2.39 is the cinematic
anamorphic widescreen format.

Parameter Value

Anamorphic ratio 2

EFL, X (mm) 28 to 76

EFL, Y (mm) 56 to 152

Zoom ratio 2.7

Image size (mm) 22.31 × 18.67

Image aspect ratio, captured 1.195

Image aspect ratio, projected 2.39

Full-field-of-view, horizontal (deg) 43.4 to 16.7

Full-field-of-view, vertical (deg) 18.9 to 7.0

F/# F∕4

Wavelength Visible

TTL (mm) ≤400

BFL (mm) ≥30

Table 4 Monte Carlo search results of the type I configuration
based on whether the obtained solutions have the same design
form in x and y . For this Monte Carlo search, 109 trials were
performed.

x , y design forms VFO solutions RT solutions

Same 10,433 491

Different 7990 9
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Due to the highly skewed findings in favor of solutions with the same design form in the
orthogonal planes of symmetry, a revised Monte Carlo search was performed using 1 billion
trials and a narrowed scope to exclusively examine solution spaces with the same design form
in x and y. Based on the overarching assumption that the number of VFO-RT solutions correlates
with the size and overall potential of a solution space, the few outlier cases of VFO-RT solutions
that had different design forms in x and y were neglected. The reduction in scope from six in-
dependent group power signs to four means there is a 4× reduction in the number of solution
spaces, going from 64 to 16 power combinations. The number of cylinder orientation orderings
remains unchanged at six, making a total of 96 solutions spaces possible for the type I configu-
ration with the same design form in x and y. In addition to increasing solution quality, this nar-
rowing of scope also increased the rate of found RT solutions by 4×.

Considering only solution spaces with the same design form in x and y, the revised Monte
Carlo search for type I configurations found 41,898 VFO solutions, and of those, 1942 were
found to ray trace successfully. This means, of the 1 billion total trials, only 0.002% resulted
in RT solutions, demonstrating just how demanding the design space is for combined anamor-
phic zooms. For comparison, using a similar method for a standard rotationally symmetric four-
group zoom, Bruggeman found20 ∼0.75% of Monte Carlo trials yielded a RT solution.

The distribution of solution spaces for the type I search presents many relevant findings. The
progression of the search process can be seen in Fig. 9, and the breakdown of the quantitative
results by solution type can be seen in Fig. 10. Interestingly, there was very little correlation
between the power combinations that produced the most VFO solutions and the combinations
that produced the most RT solutions. The top three VFO solution spaces are PNPN, NNPN, and
NNPP while the top three RT spaces are NPPP, PNPN, and PNPP. Moreover, originally thought
to be a weak variable, the order of the cylindrical groups in x and y has a significant impact on
what solutions are found. For a certain power ordering, VFO and RT solutions are highly de-
pendent on the cylinder ordering, as opposed to being equally likely for all cylinder orderings.
For example, the most common RT solution space NPPP only has RT solutions with cylinder
orderings YYXX and YXYX. These findings indicate that the validity of a first-order starting
point is equally dependent on the cylinder ordering for a given power ordering as it is on the
power ordering itself.

The obtained VFO-RT solutions were optimized as described in Sec. 3.3 and evaluated for a
variety of image performance and packaging metrics. The geometrical spot size was calculated
and averaged across all field-of-view and zoom positions. The distribution of average spot size
by solution space can be seen in Fig. 11. The solution space with the smallest median spot size
was NNPP while the space with the smallest absolute spot size was PNPP. The packaging quan-
tities for the designs, namely TTL, BFL, and element clear aperture, were also evaluated on a
solution space basis, as shown in Fig. 12. All RT solution spaces had relatively similar TTL and

1 billion 
Monte Carlo 

trials

Invalid

Invalid

Valid first-order 
solutions

Ray traceable 
solutions

NPPP
PNPN
PNPP
NPPN
NNPP
NNPN

Fig. 9 Monte Carlo search process for the type I anamorphic zoom configuration. Only solutions
having the same sign power in x and y were considered for this revised search. VFO solutions are
shown in blue, and RT solutions are shown in green. The widths of bands for invalid solutions are
not to scale. The quantitative results for found solution types can be found in Fig. 10.
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Fig. 11 Average spot size distribution for RT solution spaces of type I configuration. The spot size
is averaged over all field-of-view and zoom positions. White points indicate the median while black
boxes represents the 25th to 75th percentile range. Solution spaces are sorted by median average
spot size.

Fig. 10 Monte Carlo search results for the type I anamorphic zoom configuration. Only solutions
having the same sign power in x and y were considered for this revised search. VFO solutions (a)
and RT solutions (b) are presented. Solution types are classified by power order (horizontal axis)
and orientation ordering (hatch).

Fig. 12 Packaging distributions for RT solution spaces of type I configuration. Included in pack-
aging is TTL, BFL, and average element clear aperture. TTL is measured from front surface vertex
to image. White points indicate the median while black boxes represents the 25th to 75th percen-
tile range. Solution spaces are sorted by median values.
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average element clear aperture distributions. On the other hand, BFL distributions varied sig-
nificantly between spaces.

Another interesting result of the Monte Carlo search is how VFO and RT solutions were
distributed relative to the search boundary conditions for group EFL, TTL, and BFL (see
Fig. 13). A histogram of group EFL presented a peak for VFO solutions that shifted to longer
focal lengths for RT solutions, as you would expect with longer group focal lengths introducing
less aberration. For both VFO and RT solutions, there was a trend of more solutions for longer
systems, although this trend was less pronounced for RT solutions. Lastly, VFO solutions pre-
sented a trend of more solutions for shorter BFL values while RT solutions had the inverse trend
of more solutions for longer BFLs.

In summary, the type I configuration offers far more promising results when looking at cases
where the design form is the same in both the x − z and y − z planes. Of this set, there were six
promising RT solution spaces. Although all six are worth evaluating for a final design, the most
promising solution spaces based on size (number of found solutions), imaging performance, and
packaging size are PNPP, NPPP, and NNPP. For each of these solution spaces, there are specific
cylinder orientation orderings that are required in order to be successful.

4.3 Type II Configuration

The type II anamorphic zoom configuration offers a much more confined design space than the
type I configuration. As discussed in Sec. 3.1, due to the shared spherical variator, there are
several additional constraints on the group EFLs and zoom motions of the type II configuration.
A consequence of these additional constraints is that there are also 24× fewer solution spaces
possible for type II configurations than type I (see Table 1).

The Monte Carlo search was performed for the type II configuration using 100 million trials.
From the search, 64,060 valid-first order (VFO) solutions were found; however, solutions in only
two spaces were found, 42,537 for NPNP and 21,523 for PNPP. Unfortunately, of these VFO
solutions, zero designs ray-traced successfully (see Fig. 14).

The limited number of VFO solution spaces can be attributed to two factors. First, the con-
straints due to the shared spherical variator limit the number of valid solution spaces. As noted by
Dodoc,15 of the 16 possible power and cylinder orientation combinations, there are only five
solutions spaces that can produce valid zoom motions while satisfying the mathematical frame-
work outlined in Eqs. (9)–(13) for the type II configuration. Second, only two of the five VFO
solution spaces were found in the Monte Carlo process due to the search boundary values

Fig. 13 Distribution of VFO and RT type I solutions according to the search boundary values (see
Table 3). The Monte Carlo boundary values for group EFL, TTL, and BFL are shown in gray. The
peak of group EFL values shifts larger for RT solutions. For BFL, the trend switches from favoring
short values for VFO solutions to long values for RT solutions.
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(Table 3). For the three valid but not found solution spaces, NNPP designs required BFL
≳300 mm, NPPP designs required BFL ≳200 mm and jf1j ≲ 20 mm, and PPNP designs
required BFL ≲20 mm. All of these requirements are beyond the search boundary values as
well as the system specifications.

Of the two identified VFO solution spaces, NPNP and PNPP, neither had a single solution
that successfully ray traced across all zooms, pupil coordinates, and fields-of-view. This inability
to successfully ray trace for the given system specifications is due to the reasons laid out in
Sec. 3.2. Finding a VFO solution that satisfies both the field and pupil conjugates with minimal
aberration is a challenging problem and, due to the extra constraints on the type II configuration,
was not successful for the given system specifications.

Without any RT solution spaces, the type II configuration is not a viable option to consider
for a first-order starting point given the system specifications. The type I solution spaces
identified in Sec. 4.2 will be used exclusively in obtaining a thick lens, color-corrected final
design.

100 million 
Monte Carlo 

trials

Invalid

Invalid

Valid first-order 
solutions

Ray traceable 
solutions

Fig. 14 Monte Carlo search process for the type II anamorphic zoom configuration. Band widths
for invalid solutions are not to scale.

x = 28 mm
y = 56 mm

x = 52 mm
y = 104 mm

x = 76 mm
y = 152 mm

System EFL x - z plane y - z plane

Fig. 15 Final thick lens, polychromatic design using a type I anamorphic zoom configuration in the
PNPP-XYYX solution space. The design is shown in the x − z and y − z planes at the short,
middle, and longest EFL zoom positions. The design satisfies the system specifications in
Table 2 including a TTL of 350 mm and a BFL of 35 mm.
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4.4 Final Design

A final anamorphic design was obtained using a type I configuration in the PNPP-XYYX sol-
ution space. Although there are several promising type I solution spaces, the chosen thin lens
starting point was a PNPP-XYYX design due to the space’s large number of VFO-RT solutions
and its good imaging performance (see Figs. 10 and 11). An example PNPP-XYYX first-order
design and zoom motion can be seen in Fig. 6(a).

A final design was realized by thickening the thin lenses and performing color correction
with different glass types. Starting with three thin lenses per group, elements were removed,
split, or compounded into doublets, as necessary. The final design employs 15 elements includ-
ing three doublets, and each moving group consists of two singlets (see Fig. 15). No aspheric
surfaces were used due to their undesirable effect on the appearance of bokeh.27 The design
satisfies the system specifications in Table 2, including a TTL of 350 mm and a BFL of
35 mm. The final design was optimized to meet a set of MTF resolution specifications as well.
The quality of this design is in large part due to the first-order Monte Carlo search for classifying
different solution spaces. This design is one of several obtained and is the first thick lens com-
bined anamorphic zoom presented since the introduction of the first-order configuration by
Dodoc.15

5 Conclusions

The highly restrictive design space for combined anamorphic zoom cinema lenses requires
considerable attention to be paid to the first-order design. The global design space for the two
configuration types introduced by Dodoc15 was explored with a Monte Carlo search process.
First-order solutions were randomly generated to meet a set of system specifications, and the
accompanying zoom motions were calculated. Of those, the VFO solutions were ray traced.
Those that ray traced successfully at all zooms, pupil coordinates, and fields-of-view were opti-
mized and evaluated for a variety of image performance and packaging metrics. This allowed for
the classification and ranking of solution spaces and enabled the creation of a final thick lens,
color-corrected design. This Monte Carlo process can also be applied to many other highly
demanding optical design spaces when searching for an ideal starting point.

The Python code used for the project is available in the GitHub repository, https://github
.com/DHLippman/AnaZoom.
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