TlBr is a promising material for room-temperature semiconductor gamma-ray detectors currently under development by several groups around the world. TlBr has the optimal combination of properties: high atomic number, high density, high mu-tau product, low Fano factor, and lower fabrication cost compared to other materials. The presence of crystal defects and ionic drift-diffusion enchained by the electric field affects the performance of today’s TlBr detectors. As a bias is applied across a detector, a defect distribution inside starts changing due to ion migration. The changes appear to be most pronounced in the first weeks of applying a bias to newly-manufactured crystals during the “conditioning” period. The 3-D position-sensitive detectors provide an opportunity to investigate these processes and their effects on the device performance and on corrections applied to the spectrum. Here, we present results from analyzing response changes in TlBr crystals under applied biases using position-sensitive capacitive Frisch-grid detectors.
This work has been supported by the U.S. Department of Homeland Security, Countering Weapons of Mass Destruction Office, under competitively awarded contract 70RDND18C00000024. This support does not constitute an express or implied endorsement on the part of the Government.
|