A pH measurement of oral biofilms is helpful for monitoring the impact of acidogenic bacteria in the caries process. Demineralization of dental enamel is closely related to the time dependent pH of human plaque. Therefore, providing a means to easily measure the local pH of biofilms is a useful clinical diagnostic in the arsenal of caries prevention tools. Optical measurement methods of plaque metabolism can use intrinsic fluorescence or extrinsic fluorescence from added dyes. Autofluorescence spectral features of human oral biofilms at green (500 nm) and red (634 nm) fluorescence wavelengths using 405 nm excitation did not demonstrate a spectral or intensity shift between neutral and acidic conditions. Chlorin e6, an ingredient in chlorophyllin food supplement, exhibited a spectral and intensity shift of fluorescence emission in buffered solutions, but this quantitative pH-dependence was not transferable to a human plaque environment. Finally, a ratiometric quantitative pH measure was achieved by exciting (405 nm laser) a mixture of two dyes, fluorescein and rhodamine B. This two-dye mixture produced two strong fluorescent bands centered at 515 nm (fluorescein) and 580 nm (rhodamine B), where the 515 nm band was pH sensitive and the 580 nm band served as a pH insensitive reference. This dual-dye fluorescence ratio exhibited a linear response over pH 7 to 5 in human oral biofilms during a sugar challenge. We have explored methods to use non-contact, optical measures of local acidity levels in difficult to access dental locations such as occlusal fissures using various pH sensitive fluorescent dye systems.
|