A novel method is proposed in this paper to accurately reconstruct the three-dimensional scenes by using a passive single-shot exposure with a lenslet light field camera. This method has better performance of 3D scenes reconstruction with both defocus and disparity depth cues captured by light field camera. First, the light field data is used to refocus and shift viewpoints to get a focal stack and multi-view images. In refocusing procedure, the phase shift theorem in the Fourier domain is first introduced to substitute shift in spatial domain, and sharper focal stacks can be obtained with less blurriness. Thus, 3D scenes can be reconstructed more accurately. Next, through multi-view images, disparity depth cues are obtained by performing correspondence measure. Then, the focal stack is used to compute defocus depth cues by focus measure based on gray variance. Finally, the focus cost is built to integrate both defocus and disparity depth cues, and the accurate depth map is estimated by using Graph Cuts based on the focus cost. Using this accurate depth map and all-in-focus image, the 3D structure in real world are accurately reconstructed. Our method is verified by a number of synthetic and real-world examples captured with a dense camera array and a Lytro light field camera.
|